Enigma of Estoeric Nothingness

A Performance Study of Web Access to CICS
by Phil Wakelin, Graham Rawson and et al. ISBN: 0738415286
IBM Redbooks © 2000 , 244 pages

c_a | A detailed examination of potential hardware and software bottlenecks encountered when
exposing CICS systems onto the Internet.

A Furiarsgtoy HII.'E
ol Wish Accews to DHOS

Redhooks

Alan Zeichick

A Performance Study of Web Accessto CICS

For CICS Transaction Server Version 1 Release 3 and OS/390
Version 2 Release 7

Phil Wakelin,
Graham Rawson,
Per Fremstad,
Dave Scott,
Andy Abbey

© Copyright International Business Machines Corporation 2000. All rights reserved. by

For CICS Transaction Server Version 1 Release 3 and OS/390 Version 2 Release 7Internationa
Technical Support Organization

www.redbooks.ibm.com

IBM International Technical Support Organization

Take Before using this information and the product it supports, be sure to read the general
Note! information in Appendix D "Special notices' on page 209 .

First Edition (February 2000)

This edition appliesto Version 1, Release 3 of CICS Transaction Server for OS/390 (program number
5655-147); Version 3, Release 1 of the CICS Transaction Gateway for OS/390 (program number 5648-
B43), and Version 1, Release 1 of WebSphere Application Server for OS/390; for use together with the
0S/390 Version 2 Release 7 Operating System.

Comments may be addressed to:

IBM Corporation, International Technical Support Organization
Dept. QXXE Building 80-E2

http://www.redbooks.ibm.com

650 Harry Road
San Jose, California 95120-6099

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2000. All rights reserved.

Note to U.S Government Users - Documentation related to restricted rights - Use, duplication or
disclosure is subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

2000-10-25

Preface

The objective of thisredbook isto help you understand the performance impact of Web-enabling your
CICS-based applications. It gives detailed performance measurements and capacity planning
information for Web access to CICS Transaction Server V1.3 when using OS/390 V2.7. The redbook
Revealed! Architecting Web Accessto CICS, SG24-5466 explains the choices available to help you
decide which is the best solution to choose.

The CICS Web-enabling technol ogies covered in this redbook are: the CICS Web support function of
CICS Transaction Server V1.3, including usage of the 3270 bridge; the OS/390 Web server, whichis
currently available as OS/390 WebSphere Application Server; and the CICS Transaction Gateway for
0S/390 V3.1. It aso contains performance information on securing CICS Web support using SSL.

First, we give an overview of the different technologies and discuss the key factors affecting
performance of CICS and Web solutions. Following this, there is a summary of the performance figures
for each of the technologies we cover. Included is a simple methodology for OS/390 capacity planning
when using each technology, and a worked example of how to apply this methodology to the sample
"Trader" application.

We then present a summary of our conclusions and performance recommendations, and go on to
describe afictional story of the Trader Company to illustrate how our capacity planning calculations
could be used. Finally, all the actual performance data and the details of the test environments are
documented.

The studies presented in this book were designed for the purpose of comparing the OS/390 CPU usage
of each technology. They were al simple test applications and were run in controlled laboratory
conditions at the IBM Hursley Laboratory, UK. As such, the results provide a good comparison of each
technology and with care can be used for capacity planning purposes. However, any capacity planning
estimate you use, whatever the source, should always be verified on atest system before the application
is put into production.

This redbook appliesto Version 1, Release 3 of CICS Transaction Server for OS/390 (program number
5655-147); Version 3, Release 1 of the CICS Transaction Gateway for OS/390 (program number 5648-
B43), and Version 1, Release 1 of WebSphere Application Server for OS/390; for use together with the

0S/390 Version 2 Release 7 Operating System.

Theteam that wrote thisredbook

This redbook was produced by ateam of specialists from around the world working at the International
Technical Support Organization San Jose Center.

Phil Wakelin isasenior I/T specialist at the International Technical Support Organization, San Jose
Center, and has 9 years experience working on most platforms and versions of CICS. He writes
extensively and teaches IBM classes on all areas of CICS, specializing in the CICS client-server and
Web technology. Before recently joining the ITSO, Phil worked in the Installation Support Center, IBM
UK as a pre-sales support specialist for CICS client-server.

Graham Rawson isamember of the CICS/390 Performance group working in the CICS/390
Development group based at IBM Hursley Laboratory in Winchester, England. He has 15 years of
experience with CICS. He has recently worked as a CICS Technical Support specialist with the
Installation Support Centre specializing in CICS/390, CICSPIex SM, and MV S Parallel Sysplex
exploitation.

Per Fremstad isacertified I/T specialist from IBM Norway, currently on assignment to the EMEA
S/390 New Technology Center in Montpellier, France. He has worked for IBM since 1982 and has
extensive experience with S/390 and Large Systems. His areas of expertise include the Web and the
Web enabling of applications on OS/390. He teaches frequently on Web and Javatopics, especidly at
the IBM's customer briefing center in Montpellier.

Dave Scott isasenior I/T speciaist with IBM Global Services, in the US. He has 12 years experience
working with CICS, the past 2 years with IBM. His current responsibilities include working in the field
with customers implementing avariety of CICS solutions.

Andy Abbey isamember of the CICS/390 Performance group working in the CICS/390 Devel opment
group based at IBM Hursley Laboratory in Winchester, England. He has spent 13 of the 25 years he has
worked for IBM within the CICS group, both as a devel oper and as a performance specialist.

Thanks to the following people for their invaluable contributions to this project:

Y vonne Lyon, Emma Jacobs, Elsa Martinez, HansPeter Nagel, Eugene Deborin, Mary Comianos,
Laymond Pon, John Byrd of the International Technical Support Organization, San Jose Center

John Burgess, Paul Harris, Richard Cowgill of the IBM CICS/390 Performance group, IBM Hursley.

Nigel Williams, Geoff Sharman, Chris Goodall, Steve Longhurst, Peter Havercan, Steve Wood, John
Kaputin, IBM Hursley.

Carl Parris, Judi Bank, IBM Poughkeepsie.
Carol Shanesy, Leigh Compton, IBM Dallas Systems Support Center.

Norbert Verbestel, IBM Belgium

John Green, IBM Toronto.

Bob Y elavich, CICS consultant.

Commentswelcome

Your comments areimportant to us!

We want our redbooks to be as helpful as possible. Please send us your comments about this or other
redbooks in one of the following ways:

1 Use the on-line evaluation form found at http://www.redbooks.ibm.com/

1 Send your commentsin an Internet noteto <_r edbook@s. i bm com >

Part 1. Performance and CICS Web-enabling
Chapter List

Chapter 1: CICS and Web-enabling
Chapter 2: Performance and capacity planning factors

Chapter 1. CICSand Web-enabling

Overview

In this section of the redbook we give abrief overview of the CICS Web-enabling technol ogies we
cover in this book, together with reference information, if you wish to find out more about these
technologies.

A detailed overview of the current strategic CICS Web-enabling optionsis given in the redbook
Revealed! Architecting Web Access to CICS, SG24-4566, and the CICS Web/sel ection guide whitepaper,
available at:

1 http://www.ibm.com/software/ts/cics/library/whitepapers/cicsweb

These two sources of information detail the following four CICS Web-enabling technol ogies:
1 CICS Web support (CWYS)
1 CICS Transaction Gateway (CTG)
1 CICS CORBA client support

1 Host On-Demand

http://www.redbooks.ibm.com/
mailto:redbook@us.ibm.com
http://www.ibm.com/software/ts/cics/library/whitepapers/cicsweb

This performance study only covers the CWS function in CICS TS V1.3 and the OS/390 CICS
Transaction Gateway. If you wish to find more information about CICS CORBA Client support and
Host On-Demand, you should refer to the following documentation:

1 Java Application Development for CICS, SG24-5275

1 IBM SecureWay Host On-Demand: Enterprise Communication Era Network Computing , SG24-
2149

First, we will give abrief overview of the principles of CICS modular design asit relates to CICS Web-
enabling, before presenting a general introduction to the CWS and the OS/390 CTG technologies.

1.1 The separation of presentation and businesslogic

A sound principle of modular programming in CICS application design is to separate the presentation
logic from the business logic. Such amodular design provides a separation of functions. Communication
between the programsis by using the EXEC CICS LINK command, and data is passed between such
programsin a COMMAREA (communication area). The structure of this datain the COMMAREA is
also part of the application design. Thisisillustrated in Figure 1 .

CICS application
C c|
[0| L)
1 tal M 1 kA
..| [_]—_.anuﬁlnrl.u :un Hj'- ﬁ-M Busingss kogic
— e Al A 7
. Cm— 2] R
3270 devices E | /“ E
A)./// A
Other
clignts

Figure 1: Separation of CICS business and presentation logic

The separation of business and presentation logic enables the programs that control the user interface
(presentation logic) to be separated from the programs that perform the actual business requests (such
updating database entries). These programs are still executed together as asingle CICS task, but if
designed in this modular form, then they can readily exploit the distributed program link (DPL) and
workload management functions provided by CICS to spread work within a sysplex or between CICS
systems distributed across a network.

Further, if the business logic of atransaction isisolated from the presentation logic and given a
communication area (COMMAREA) interface, it is available for reuse with different presentation
methods. This meansit can be invoked from avariety of sources; such as:

1 From the CICS Universal Client using the External Call Interface (ECI) running on a workstation.

1 From a program where the presentation logic is HT TP-based (Web-aware).

1 From a Java applet or servlet using the facilities of the CICS Transaction Gateway and the ECI
Java methods

1 From a CORBA client using the I10OP protocol and the JCICS classes.

1 From another program running in the OS/390 Sysplex using the EXCI (External CICS Interface)
interface (such as aWeb server ICAPI or CGI program).

1 From any program which uses a CICS LINK and a COMMAREA structure to pass data.

Don't forget that there is arestriction on the size of datathat can be passed in a CICS COMMAREA.
The maximum size of thisareais 32 KB. With CWSin CICS TS V1.3 you now have the choice of using
the WEB API to send and receive HTTP datastreams and so are no longer subject to this 32 KB
restriction.

Many legacy applications were not designed or written with a separation of presentation and business
logic, and are often deemed too difficult or costly to re-engineer. For that reason IBM has developed
Web-enabling technologies which allow re-use of the 3270 interface as well as technologies which
utilize a callable COMMAREA interface.

1.2 CICSWeb support

CICS Web support (CWS) provides client Web browsers with direct access to CICS programs or
transactions running in an OS/390 CICS region. The base requirements for this function are provided in
CICS/ESA V4.1, but significant enhancements are provided in CICS Transaction Server (CICSTS) V
1.3, which is the subject of this redbook.

CWSand CWI

In CICS Transaction Server V1.3, the CICS Web functionality, previously known as the CICS Web
Interface (CWI), was split into the listener support for TCP/IP and the protocol support for HTTP, and
was a so internally redesigned. This book now refersto the CICS HTTP protocol support as CICS Web
support.

1.2.1 CICSWeb support

CICS Web support (CWS) is a set of resources supplied with CICS TS V1.3 that provide CICS with
some functionality similar to areal Web server. A summary of thisfunction isillustrated in Figure 2 .

Wil browser

o fl . k
- |
\ cics || L PrOEOAEALOR
Sockels

Wel-aware
C logic
W

g8 4
0550 — L=
Wb server ." |
: L A -
cics | 3270 ||presentation
WebSeever | = | Wb bridge | legic
Phigin J

lisberer
CICS
application

il

PO REEOO

CICS region

Figure 2: CICS Web support

CWS provides anative HTTP interface to CICS, this interface can be used by both 3270 based
transactions and applications that provide a callable COMMAREA interface. Two different
configurations can be used to route the HTTP requests into the CICS region. Both configurations allow
the use of the same facilitiesin CICS, athough the configuration of the two optionsis significantly
different. These configurations are as follows:

1 A direct connection from aWeb browser to CICS. This uses the facilities of the CICS Sockets
listener to pass the requests directly into CICS Web support.

1 Through the OS/390 Web server using the facilities of the CICS WebServer Plugin
(DFHWBAPI). Thisisa CICS supplied extension to the OS/390 Web server. It routes requests
into the CICS Web support in a CICS region using the EXCI communi cation mechanism.

With both, the direct connection and the CICS WebServer Plugin, CWS can be used to invoke two types
of CICS applications.

1 Toinvoke a3270 transaction , the facilities of the CICS 3270 bridge are used. The 3270
transaction remains unchanged and the 3270 output is converted to HTML. We will refer to this
function as the 3270 Web bridge . Thisfunction isonly available when using CICS Transaction
Server V1.2 or higher.

1 Toinvoke an application that provides a callable COMMAREA interface, some new CICS
presentation logic must be written. Thislogic uses CICS facilities to interpret, act upon, and then
build and return the HTTP datastream. We will refer to a CICS application containing such logic
as" Web-aware". This Web-aware logic can be contained either within the program or in a
separate presentation module that is linked to by the application. To create this Web-aware
presentation logic there are two different methods provided by CWS:

i WEB AP

i COMMAREA manipulation

The WEB API, together with the DOCUMENT API and TCPIP AP, provide arich set of functionsto
interpret, manipulate, and build the HTTP datastream within a CICS application. They are part of the
new function of CWSin CICS TSV 1.3, and are described in more detail in chapter 12 of CICS Internet
Guide, SC34-5445, and chapter 3 of CICS Transaction Server for OS/390 Version 1, Release 3: Web
Support and 3270 Bridge , SG24-5480.

The COMMAREA manipulation technique was originally introduced with CWI support in CICS/ESA
V4.1. It uses the CICS COMMAREA as a buffer for transferring the HTTP datastream along with a
range of utility programs to manipulate the datastream. The CWS HTML template manager program
(DFHWBTL) is used to build the response. Thistechniqueis still availablein CICS TS V1.3, but for
ease of use and higher functionality, we recommend use of the WEB API.

1.2.2 Using a CWSdirect connection

Figure 3 illustrates the mgjor components of CICS Web support when using Web-aware presentation
logic viaadirect connection to CICS.

——————————

Py Enderer ach e aaciers 1
Comims C-501 Ties | ek I
. JWEN] | m .|.
= I] " 3
HTTE 1 | T =l
; T | - . ml = Progeam
b — —_—l . |
._—-!.. | DFRCCN | —] i
“'!‘-._‘_ | 8 | datal comvearior | '
Wah THe = | Dz | L
Browser i b | 2= I |
TEPNP | 4 e "
|
|

r.n.lu.ld.ill.._"! CAEA) li
CICS | Buninoss Logic I.n1n-rfJu:-J 2
05/390 Region CICS Websuppenn -~ — - — - - - - -4

Figure 3: CICS Web support — direct connection
CICS Sockets listener

1 The CICS Sockets domain provides TCP/IP support to handle requests for internal CICS functions
that use TCP/IP services, currently HTTP and 110P support. The CICS Sockets listener isan
internal CICS function serviced by the private CSOL transaction, and should not be confused with
the CICS TCP/IP Sockets interface. Unlike the CICS Sockets listener, the CICS TCP/IP Sockets
interface provides an application level socket interface to the CICS application, and is described
further in the redbook CICSESA and TCP/IP for MVS Sockets Interface , GG24-4026.

Web attach transaction
1 The Web attach transaction(CWXN) performs the Web attach processing. It invokes the
DFHCCNYV data conversion routines, links to the specified analyzer, and then invokes the alias.
The CWXN task will terminate after invoking the alias, unless persistent HT TP connections are
used.
DFHCCNV
1 The DFHCCNYV data conversion routines are invoked by the Web Attach processing to convert
the HTTP headers and user datafrom the ASCII code page of the Web browser client to EBCDIC
and back.

Analyzer

1 The purpose of the analyzer is to analyze the incoming HT TP request. It decidesif the request will
be executed in the CICS system and if so, which resources are required. It uses the information in
the URL to decide the name of the alias transaction, converter and user program to be invoked.
The analyzer can also be modified so asto use HT TP basic authentication to check the
authenticity of each HTTP request.

Alias

1 Thealiastransaction isinvoked by the analyzer. The default alias transaction code is CWBA, but
this can be modified. The Alias transaction invokes the program DFHWBA, which links to the
business logic interface.

Businesslogic interface

1 Thebusinesslogic interface (BLI) is an externally callable interface that allows a client to invoke
the business logic in an application. It isimplemented by the module DFHWBBLI. It provides a
mechanism for implementing Web-aware presentation logic in the " converter ". The converter
provides Decode and Encode routines to receive and send the HTTP presentation logic. Note that
it is possible to bypass the converter and implement the Web-aware logic in a separate module
which would communicate directly with the business logic viaa COMMAREA interface.

1.2.3 Using the CICS WebServer Plugin

An aternative approach to accessing CICS Web support is through the services of the OS/390 Web
server, using the CICS WebServer Plugin, (DFHWBAPI). In this implementation, some of the function
previously handled through the CICS-supplied programs for CICS Web support is now replaced by
function within the Web server.

The OS/390 Web server has been rebranded at various times to reflect its positioning within IBM's
Internet product portfolio. The Internet Connection Secure Server (ICSS) Web server became the Lotus
Domino Go Webserver for OS/390, which has now been rebranded as WebSphere Application Server
for OS/390. Whatever server you are using, we will refer to it asthe OS/390 Web server.

The CICS WebServer Plugin replaces the functionality of the CWS analyzer, described previously. The
0S/390 Web server has to be configured with a service directive in order to function with the CICS
WebServer Plugin. This configuration is described in the CICS Internet Guide , SC34-5445. Using this
service directive, the OS/390 Web server receives the HTTP request, builds an EXCI request, and
invokes the BLI using the CSMI mirror transaction in the target CICS region. The HTTP datastream is
passed to the BLI in the EXCI COMMAREA.

Figure 4 illustrates the major components of CICS Web support when using Web-aware presentation
logic viathe CICS WebServer Plugin.

Dincade

WobSphirn
et Apuicadon e
l'i‘."l".n‘u-\:"l- Saryn |
Comms L
- HTTP Server | ' DFHABELI !
s - miror ||| g IS
- o Pl - B ogram
d— WA Y
af—— ab
e S EXC
Browser TCRAP Fiugin = Encoda
05380
050 Wob saryer | | SIC3 Megion | CICS Wb suppeet

Figure 4: CICS Web support, with the CICS WebServer Plugin

The same facilities within CICS are available using the CICS WebServer Plugin as using a direct
connection, but there are afew important differences, which are summarized below:

1 The OS/390 Web server and the CICS region must be running within the same OS/390 image or
Sysplex since the CICS WebServer Plugin uses the EXCI communication mechanism.

1 Only 32 KB of datain the HTTP datastream can be passed to or from the CICS program when
using the CICS WebServer Plugin. Thisis because the EXCI uses a standard CICS COMMAREA
on which the restriction of 32 KB applies.

1 Security processing can be performed in the OS/390 Web server if using the CICS WebServer
Plugin. Either HTTP basic authentication or SSL security can be configured.

1 Dataconversion is performed in the OS/390 Web server, not in CICS when using the OS/390
Web server.

For further information on using and configuring CWS with the CICS WebServer Plugin, refer to the
following manuals:

1 CICSTransaction Server for OS390 Version 1 Release 3: Web Support and 3270 Bridge , SG24-
5480

1 CICSInternet Guide , SC34-5445
For information on configuring the OS/390 Web server, refer to:
1 IBM HTTP Server for OS/390 Release 7 Planning, Installing, and Using, Version 5.1 , SC31-8690

1.2.4 3270 Web bridge

The 3270 bridge feature of CICS Web support provides turnkey access to 3270 transactions from the
Web. We will refer to this function as the 3270 Web bridge. To implement this solution, you need only
reassemble your BM S mapsets and add CICS PROGRAM and TRANSACTION definitions. The
resulting HTML isa GUI version of the original 3270 screen; this can be tailored if you want, but you
do not need to. Most 3270 transactions will then run unchanged using this technique, though some
applications may require modification. These restrictions are documented in chapter 8 of Revealed!
Architecting Web Accessto CICS, SG24-5466. The ease of implementationmakes the 3270 Web bridge

the preferred solution whenever Web accessis required quickly, programming resources are limited, or
the application has limited use or life expectancy.

The 3270 Web bridge can be used with either the direct connection to CICS or with the CICS
WebServer Plugin. Figure 5 illustrates the data flow for a Web browser request using the facilities of the
3270 Web bridge and a CWS direct connection to access a CICS 3270 transaction.

Note that the 3270 bridge feature is only available when using CICS TS V1.2 or alater release.

CICS Reglon

|'§.‘ﬁ'-.r.&l cIcS Wb SFHEEHY | L
P Secion | | amueh T hoaden]
e Indgne e |
. .J o 1o | (ecwm -
=" HTT anshroot = |
.- r - ! - - | g DFHNETTA [l
= ‘-J Wab
‘Web o '., HECHY bidge
e AR T
Browss T™finpul daia) it
T I I]
G T Y =
=% Uit 3270
EEROENY . - Trareachons

057300

Figure 5: CICS Web support — 3270 Web bridge

Theinitial dataflow isthe same as that described in Figure 3 on page 8 for the description of CICS Web
support and the BL1. However, instead of invoking the user program, the Web terminal trandlation
program, DFHWBTTA, isinvoked by the BLI. DFHWBTTA starts the transaction to be run in the 3270
bridge environment, where it runs in conjunction with the CICS provided Web bridge exit DFHWBLT.
A summary of the components of the 3270 Web bridge follows.

DFHWBTTA

Thisisthe Web terminal translation program, it initiates execution of the transaction under the 3270
bridge feature of CICS. DFHWBTTA formats the input in the COMMAREA to the form in which the
3270 transaction named in the Web user's input will expect it, attaches the transaction for execution
under the bridge, and waits for it to complete.

DFHWBLT

Thisisthe Web bridge exit and is used to control execution of the target transaction. When the 3270
transaction issues a 3270 RECEIVE, DFHWBLT supplies the input from the DFHWBTTA
COMMAREA. When the transaction SENDs, it stores the output there. When the 3270 transaction
running under the bridge ends, DFHWBLT notifies DFHWBTTA, which trandates the 3270 output
from the transaction to the HTML equivalent and then returns to the alias program. The aias now
resumes standard CWI processing: It re-invokes the supplied converter program, this time to "encode"
the output into HTTP/HTML, invokes DFHCCNYV for conversion to ASCII and the proper code page,
and returns the response to the Web browser.

Note there are several other sample bridge exits apart from DFHWBLT. These allow invocation from
other environments, including MQ, TS, or TD queues, or a CICS Business Transaction Services (CBTS)

environment. Refer to the redbook: CICS Transaction Server for OS390 Version 1, Release 3: Web
Support and 3270 Bridge , SG24-5480, for further details.

State management

The program DFHWBST controls the state information required to manage 3270 pseudo-conversations
when using the 3270 Web bridge. Thisinformation is used by DFHWBTTA and DFHWBLT.

Garbage collection

The program DFHWBGB is responsible for "garbage collection™. It runs at an interval controlled by the
SIT parameter WEBDELAY and purges state data associated with terminated 3270 Web transactions.

1.3 CICS Transaction Gateway

The CICS Transaction Gateway (CTG) is aset of server based software components that allows a Java
program to invoke services in a CICS region. The Java program can be an applet, a servlet, or acustom
Java application.

We describe the architecture of using the CTG with applets and servlets, but not applications, since they
have no specific architecture.

The CICS Transaction Gateway is available for production use on OS/390, and on the following
distributed platforms: AIX, Sun Solaris and Windows NT. It is also available for development use on
Windows 95 and Windows 98. A high level summary of how a CICS application can be Web-enabled
using the CTG isillustrated in Figure 6 .

W Broavsar

- c
e Q
—tw M
M
- cics
— apphsation
B | E
CTG o A
270
EF pfaEEnaTcah
T L logic
Wieb server
tidsr
CICS reglon

Figure 6: CICS Transaction Gateway

When the CICS Transaction Gateway for OS/390 V3.1 isused, it is supported with CICSTS V1.2 and
V1.3. Note, however that if you wish to use the CTG V3.1 with CICS Transaction Server V1.2, the fix
for APAR PQ31270 must be applied to CICS Transaction Server. This does not apply to CICS
Transaction Server V1.3.

The OS/390 CICS Transaction Gateway, which is the subject of this performance study, consists of the
following components:

Java gateway application

1 Thislong-running processis used to accept CTG requests issued from remote Java applications
such as applets.

Javaclasslibrary

1 This contains the following components
i Basic Java methods

These are used to set up connectivity to a CTG Gateway process or to invoke the underlying
CICS Universa Client or OS/390 EXCI.

i ECI Javamethods

These methods provide access to CICS COMMAREA based programsin asimilar fashion
to the CICS Universal Client ECI or the OS/390 EXCI.

i Javabeans

These beans support development of applications from a number of Visual development
environments such as Visua Age for Java.

Also, the OS/390 CTG uses the function of the CICS EXCI to communicate with the target CICS
region. The function of the EXCI is used in the same way as the CICS Universal Client ECI would be
used on a non-0S/390 platform.
In addition, the following components are available on non-OS/390 versions of the CTG:
CICS Universal Client

1 The CICS Universal Client provides communication to the CICS server.
EPI Java methods

1 These methods provide a Java API to manipulate CICS 3270 based transactions.
Terminal Servlet

1 Thissupplied servlet dynamically converts 3270 output into HTML for display at a Web browser.
Apart from manually coding the CICS CTG Java methods, you can develop a CTG application using the
IBM Common Connector Framework (CCF) JavaBeans. We did not use the CCF in our CTG
performance test application; however, IBM's CCF does provides the following:

1 A common client programming model for connectors. These interfaces allow VisualAge for Java's

Enterprise Access Builder (EAB) for transactions to easily build applets or servlets to access

programs or transactionsin a CICS region.

1 A common infrastructure programming model for connectors, which gives a component

environment, such as WebSphere, a standard view of a connector, and vice versa
When developing an applet or servlet using the CCF CICS connector, the CICSConnectionSpec,
CICSCommunication, and EClInteractionSpec or EPIlnteractionSpec classes are used. These classes can
be specified in an EAB Command with an input and output (COMMAREA) to invoke a CICS program.

For more information on developing CTG applications using the CCF, refer to the redbook: Visual Age
for Java Enterprise Version 2: Data Access Beans - Serviets - CICS Connector , SG24-5265.

For product information on using the OS/390 CTG, refer to CICS Transaction Gateway for OS390
Administration Version 3.1 , SC34-5528.

For information on configuring the CTG in different scenarios, refer to the redbook Revealed! CICS
Transaction Gateway with More CICS Clients Unmasked , SG24-5277.

The following sections will now review the major components of the OS/390 CTG and how the
architecture is different when using Java applets as opposed to Java servlets.

1.3.1 CICS Transaction Gateway applet architecture

Figure 7 shows an implementation of the CTG applet architecture on OS/390.

HITRL-T

- N _ Wiob sarver
{appiet]
—t
program

-

fralevany
application

EXCH

|

' |
Wb browser | Jawa |

|

|

|
|
|
- |
|
|
|

CICE mgion

Figure 7: CICS Transaction Gateway applet architecture on OS/390

Web browser

Thisis a Java enabled Web browser. When aHTML page containing an applet tag is referenced, the
applet is downloaded from the Web server. The applet Java methods are then executed in the Web
browser VM, and create a CTG network connection to the Java gateway application. This connection
can be one of the following protocols: TCP/IP, HTTP, SSL, or HTTPS.

Web server

The Web server serves up the HTML page, which contains the applet tag for the CTG applet, and also
servesthis applet to the Web browser.

Java gateway application

Thisisalong running Java application that receives the remote ECI requests from the applet and, using

the Java Native Interface (INI), invokes the EXCI to pass the ECI request to the CICS program.
Javaclasslibrary

These Java methods are used by the applet to open a connection to the Java gateway application, and by
the Java gateway application to flow the ECI request to the CICS region.

1.3.2 CICS Transaction Gateway servlet architecture

Figure 8 illustrates the CTG servlet architecture on OS/390.

as/380 | 057300
Web sarver

Ve Sphare
Application Server

'r sanviat :] ; Cics

- HTTR|

.- | ———d | ExC
—-E Java class - B TN
A— [Abrary =L | ocics

Web browser CTG

Figure 8: CICS Transaction Gateway servlet architecture on OS/390
Web browser

Thisis astandard Web browser that can send HTTP requests.
WebSphere Application Server

WebSphere Application Server for OS/390 provides both the OS/390 Web server (IBM HTTP Server)
and the servlet engine. The servlet runs within the VM of the servlet engine, just as an applet runs
within a Web browser.

The servlet

The servlet iswritten using the CTG Java methods and is compiled and deployed ahead of time. It is
invoked by arequest from the Web browser using either aURL, aHTML FORM, or aHTML server-
side include. The servlet uses used the CTG local: protocol to invoke the CICS EXCI libraries using the
JavaNative Interface (JNI). The CTG ECI methods use the EXCI to invoke the CICS program, passing
the COMMAREA as input.

Javaclasslibrary

This Javalibrary contains a set of methods used by the servlet to invoke the EXCI using the facilities of
the INI. The CTG Java methods are invoked within the servlet, and ECI requests are sent from the
servlet to the CICS region.

Note that no CTG Java gateway application is usually required in the servlet configuration. The Java
gateway application is only required when the CTG Java methods are executed in a VM remote from
wherethe CTG isinstalled, asis the case with the applet architecture.

Chapter 2. Performance and capacity planning
factors

Overview

In this chapter we will discuss the various system components which contribute to performance
bottlenecks. We will also discuss ways to reduce some of these bottlenecks, and tell you where
additional information can be found.

What is a performance bottleneck?

A performance bottleneck is the component in a computer environment causing the highest level of
contention. This can be a system resource like CPU, memory, disk, the network, the client machine, or
the application. There is always a bottleneck, because some component will always be the slowest. The
guestion is whether this bottleneck is a problem to your application.

How to deter mine a performance bottleneck

There are some general guidelines which should be followed when identifying a performance
bottleneck. A standard approach should be used when determining where the performance bottleneck
exists. Reviewing CPU, memory, disk 1/0, and network 1/0, asrepresented in Figure 9, isa
recommended approach.

o~
Y wntr—
r'—“l CPL bound?
.
Achons ™
L ;NI
FaN ; \\
Py \ - %
i mpziom P L o Wi
plctadat =~ gm0
b [
% ‘\\ /
!.I‘lp:tws- g
L | [Actiong
e
Yoz /I o
; g i-
Adeitional '
AClions e v Actions
Tests |

Figure 9: Performance flowchart

Monitoring performance

When attempting to isolate a performance bottleneck, the importance of collecting and analyzing
performance data should not be overlooked. Attempting to resolve a performance bottleneck without

actual performance data can lead to making incorrect inferences about the source of a performance
bottleneck. Changing the configuration may have no impact on a performance bottleneck without first
understanding the source of the bottleneck. Using data collected by RMF, CICS statistics, Tivoli
Performance Monitor, and other tools will provide a set of concrete data to be used when isolating a
performance bottleneck.

Capturing performance data will also help to measure the affect of configuration changes on
performance. Without this data you will not be able to accurately assess the success of performance
tuning.

2.1 Har dwar e components influencing performance

In this section we will focus on the hardware components of a computer system which contribute to
performance bottlenecks. Section 2.2 , " Software components influencing performance” on page 26 will
address the software components of performance bottlenecks.

2.1.1 CPU

The CPU capacity that is available for use by CICS will have an impact on the performance of a CICS
region. In the sections ahead, we discuss some of the impactorsto CPU performance.

Number of engines

In its simplest configuration, a central el ectronic complex (CEC) consists of a single processor (also
referred to as a CPU or engine). As workload increases, additional processors may be added to a CEC.
In order to take advantage of multiple processors, it must be possible for the workload to be divided into
concurrent activities. How CICS TS V1.3 enables the use of multiple processorsisdiscussed in 2.2.1 ,
"CICS Transaction Server for OS/390" on page 26 later in this chapter.

Cryptographic Coprocessor feature

The Cryptographic Coprocessor feature is a hardware feature available on S/390 processors. It consists
of dual cryptographic module chips protected by tamper-detection circuitry and a cryptographic battery
unit. It can be used to off-load CPU processing from the main CEC processors when performing
cryptographic operations, and as such, can provide a significant reduction in CPU usage for both SSL
handshakes and SSL data transmissions. See Chapter 6, "SSL with CWS" on page 85 for further details.

Total workload

In addition to the CICS workload, the workload of the entire CEC must be taken into consideration
when reviewing performance bottlenecks. The reason for a CICS performance bottleneck may be that
some other workload is using a higher than anticipated percentage of resources, thus limiting the
resources available for the CICS workload. RMF reports will indicate what system tasks are responsible
for use of excessive resources.

2.1.2 Storage

Not having enough storage available to a CICS region will result in high paging rates and often short-
on-storage (SOS) conditions, both of which can cause slow response times. Some of these issues are

discussed here; additional information can be found in the CICS Performance Guide , SC33-1699.
Paging

Paging occurs when there is not sufficient central storage to support al requests for storage within the
system. Performance monitor data should be reviewed to determine the paging rate for the CICS region.
A paging rate of less than one page-in per second from direct access storage device (DASD) isto be
preferred.

Paging between central storage and expanded storage is afraction of the cost of paging to auxiliary
storage (DASD). The page-in operation is more costly than that of a page-out. A page-in operation is
processed synchronously by OS/390, which will temporarily halt any other CICS activity within the
region, while the requested datais |loaded into central storage.

The maximum number of CICS tasks can affect the amount of storage that a CICS region is requesting.
The maximum task (MXT) system initialization table (SIT) parameter controls the number of tasks
within a CICS region. If paging is a performance bottleneck, areview of the CICS statistics will show
the value for MXT and the number of times that a CICS region has reached maximum tasks. By
reducing MXT, the demand for storage isless, which may in turn reduce the amount of paging and may
increase throughput due to the reduced paging rate.

The CICS Performance Guide , SC33-1699, discusses the impact of paging on CICS performance.
CICS storage

CWS uses temporary storage queues to store inbound HTTP requests and outbound responses built by
the WEB API. A sample temporary storage queue definition exists in the DFHWEB group. The supplied
sample uses main temporary storage in order to reduce the amount of 1/0 to auxiliary storage. Y ou
should consider the placement of temporary storage based upon the storage available to your CICS
region.

The Transaction Isolation (TRANISO) SIT parameter also impacts how CICS alocates storage. A CICS
region running with TRANSIO=Y ES will allocate user requested storage above the 16 MB linein 1 MB
blocks. This means the amount of storage requested by a CICS region may be very large. Thiswill
impact the amount storage requested by a CICS region.

The LE runtime options that are in effect also impact how storage is allocated within a CICS region. LE
options such as ALL31 and STACK can have a dramatic impact on storage requirements. For a detailed
description of LE options, see OS390 LE Installation and Customization Guide , SC26-4817. The
RUWAPOOL, SIT parameter will also impact how CICS allocates LE storage. Additional information
on the impact of LE options and RUWAPOOL are found in the CICS Performance Guide , SC33-1699.

2.1.3Disk I/O

Disk 1/0 can contribute to performance bottlenecks due to the longer response times involved in
accessing data from disk than from memory. Ensuring that disk 1/0 traffic is optimized minimizes the
amount of time spent waiting for DASD operations to complete. In addition to monitoring and tuning
DASD performance, the use of advanced storage technology, such as IBM's Enterprise Storage Server
offer greater levels of performance and scalability which aid in eliminating DISK 1/0 as a performance
bottleneck. Information about the latest storage technology available can be found in:

1 http://www.storage.ibm.com

Data set management

The goal of data set management isto minimize DASD operations. When using CICS with VSAM, this
can be accomplished by increasing the number of VSAM hiperspace buffers, and by the use of CICS
Data Tables, both of which will minimize disk 1/0. By minimizing VSAM CI/CA splits and performing
DASD subsystem tuning, other DASD operations will be minimized. Ensuring that DASD operations
such as channel busy, device busy, and seek times are at appropriate values for your DASD subsystem
hel ps reduce response times. The CICS Performance Guide , SC33-1699, has guidelines for DASD
tuning.

2.1.4 Network 1/0

In the case of Web-enabled CICS transactions, you have two possible classes of network /O to
consider: your private network, and the public Internet.

Your private network

This term private network may mean different things, depending on your specific network configuration.
It may be an intranet, an extranet, or some other network configuration. But, it is a network over which
you have some direct control. Points of potential performance bottlenecks within your network include
the CEC network adapter, bridges, routers, and other components within the network infrastructure.

Network adapter

Ensuring that your CEC has ample bandwidth to connect to the network is an important point to review
in order to avoid this performance bottleneck. Sizing of the Open Systems Adapter (OSA) should be
performed to ensure that adequate bandwidth exists. The OSA is a hardware feature which provides
direct connection from a CEC to the LAN. OSA supports a variety of network topologies at different
speeds. Refer to Planning for the Systeny390 Open Systems Adapter Feature , GC23-3870, for
additional information on the setup of OSA cards.

Network infrastructure

The components of your network are also potential bottlenecks. Ensuring that there is adequate capacity
for your CEC and the clients on your network will eliminate this as a bottleneck. The importance of the
network to your total performance cannot be stated strongly enough. As you migrate towards a Web-
centric environment, away from a 3270 green screen environment, you need to model the impact to the
network infrastructure. The 3270 data streams on the network are less traffic-intensive than the Web-
based network traffic. Network performance is a unique experience, and every network may behave
differently under similar loads. By using tools such as Tivoli, you can determine if some component
within your network is a performance bottleneck. Y ou then can develop a plan to address this
bottleneck.

The public Internet
It is also possible that the Web-enabled CICS application that you have built is accessed across the

public Internet as a part of your company's e-business strategy. If thisis the case, then you may not have
much control over the overall performance of your customer's connection to your application. This does

http://www.storage.ibm.com

not, however, remove the Internet as a potential bottleneck.

Y our Internet service provider should be able to address your specific needs. For our purposes, we will
be assuming that you have sufficient capacity in order to eliminate the Internet as a performance
bottleneck.

2.1.5 Client configuration

While the sizing of the client machine is beyond the scope of this redbook, it is a notable part of the total
application architecture and should not be overlooked. When isolating performance bottlenecks, the
same issues apply to the client machine as are discussed in this chapter. Depending on which approach
you use to Web-enable access to CICS, the role of the client machine and the processing requirements
for the client machine will vary. A client that is used primarily as a Web browser will have lighter
processing demands than a client machine that will be running Java applets. Understanding the role of
the client machine within your application architecture will help you to eliminate the client machine as a
performance bottleneck.

2.2 Softwar e components influencing perfor mance

In addition to the hardware components which influence performance, as discussed in the last section,
software also has an impact on performance.

As part of ensuring that your CICS system and other software is running optimally, you should attempt
to keep current on maintenance. While it may not always be possible to be running the latest release of
maintenance, there are often significant performance enhancements available through maintenance.

2.2.1 CICS Transaction Server for OS/390

CICS Web support (CWS) isafully integrated service within CICSTSV1.3. CICSTS V1.3 has
expanded the CICS domain structure to include a separate domain for CICS TCP/IP socket requests.
CICS TS V1.3 has aso extended the API to provide the WEB APl and DOCUMENT API, to support
the CWS and HTML template processing. See the CICS Transaction Server, Migration Guide , GC34-
5353 for more information.

Multiple TCBs

Since CICS TS V1.3 hasamulti-domain design, it dispatches multiple TCBs, and thusit isableto
concurrently utilize multiple processors in a multi- processor CEC. The businesslogic, however, still all
runs within the QR TCB, and therefore is not dispatched across multiple processors. Further details on
CICS usage of multiple TCBs and how to use CICS dispatcher statisticsto analyze TCB usageis given
in 8.3, "Using too much CPU" on page 146 .

2.2.2 The OS/390 Web server

Tuning the OS/390 Web server for peak performance involves reviewing OS/390 UNIX System
Services tuning guidelines. Reducing program loads can be done by ensuring that the UNIX service
modules arein LPA and that Web server libraries are in the linklist or LPA. Thus, you will reduce
response times for Web requests. Performance can also be improved by using the Cachel ocalFile
directive or Fast Response Cache Accelerator to pre-load frequently referenced Web pages, or by using

the LE runtime option HEAPPOOL S(ON). It is also important that you do not start the OS/390 Web
server from a UNIX shell, otherwise the performance specifications of the UNIX shell will be inherited
by the Web server address space.

It is possible to run the OS/390 Web server in three modes:

1 Standalone mode is best suited for test environments and a small number of connections.

1 Scalable mode works in conjunction with WLM, which can improve OS/390 Web server
performance by dynamically dividing work between multiple queues based on WLM settings.

1 Multiple mode allows you to run multiple instances of the OS/390 Web Server on different ports.
Refer to http://www.s390.ibm.com/oe/bpxaltun.html and IBM HTTP Server for OS390 Release 7

Planning, Installing, and Using , SC31-8690, for details about performance tuning the OS/390 Web
server.

2.2.3 eNetwork Communications Server

Each subsequent release of eNetwork Communications Server has had significant performance
enhancements over the prior release. Y ou should review your current version and maintenance level of
TCP/IP before you begin to implement Web-enabled CICS applications. In the latest rel eases of
eNetwork Communications Server, TCP/IP shares services with VTAM, such that CPU time for TCP/IP
requests is charged to both the TCP/IP and VTAM address spaces.

Reviewing the eNetwork CS 1P Configuration , SC31-8513, to ensure that you have selected appropriate
TCP/IP tuning parameters, is also important. In the most recent version of TCP/IP, the number of tuning
parameters is reduced. Setting the TCP/IP TCPSENDBfrsize and TCPRCV Bufrsize to appropriate sizes
for the largest data size that you expect to should be reviewed.

The SOMAXCONN parameter controls the number of concurrent connections. This parameter should
be reviewed to ensure that it isin line with CICS parameters, such as TCPIPSERVICE BACKLOG.

224HTTP

CICS TS V1.3 supports HTTP 1.0 requests and responses and the HTTP 1.0 KeepAlive extension,
which offers persistent HT TP connections. Chapter 5, "CWS with Web-aware presentation logic" on
page 65 discusses the affect of using persistent connections. Unpredictable results may occur if you use
HTTP 1.1 specific headers.

CICS TS V1.3 has extended the EXEC CICS API to include anew set of WEB commands. These
commands are used in CWS Web-aware programs to send, receive, and manipulate HTTP datawithin a
CICS application. The redbook CICS Transaction Server for OS390 Version 1, Release 3: Web Support
and 3270 Bridge , SG24-5480, further describes the WEB API and support of HTTP.

2.2.5 Java
It isimportant that your system is running at the highest maintenance levels available for Java and

related Java support. Java support isarapidly evolving area, and remaining current on support will
provide the most efficient performance. LE runtime options can also have a major impact on storage

http://www.s390.ibm.com/oe/bpxa1tun.html

usage and CPU utilization. The key LE runtime options for Javaare STACK, HEAP, and ANYHEAP.
Setting the values for these options too small may cause additional GETMAIN of storage, which will
also increase CPU consumption. Setting LE runtime options too large will allocate an excessive amount
of storage, which may result in SOS conditions. Chapter 7 , "The OS/390 CTG" on page 103 in this
redbook, and the CICS Performance Guide , SC33-1699, describe Java performance considerationsin
greater detail.

2.2.6 Client configuration

While the specifics of the client environment are not addressed in this redbook, you should understand
what impact your particular client configuration has on performance. Not all software configurations
will behave the same way under all circumstances. Be aware of the releases of software and what the
impact of migrating from one release to another has on the performance of your application architecture.

It isalso possible that you will not have complete control over all aspects of the client configuration.
Products such as Tivoli Performance Monitor can help with maintaining client configurations.

2.3 Workload management

Once you have set performance goals, Workload Management (WLM) works automatically to maintain
those goals. The manuals, MVS Planning: Workload Management , GC28-1761, and CICSPlex: SV
Concepts and Planning , GC33-0786, discuss setting up WLM in detail.
The following benefits are gained through the use of WLM:
1 Improved performance through the use of MV S resource management
1 Simplified MV S tuning
1 The ability to integrate workload balancing for terminal-initiated transactions, non-terminal-
initiated transactions, External CICS Interface (EXCI) clients, CICS clients, CICS Web support,
CICS Transaction Gateway, 110P, and started tasks

1 The ability to integrate CICS Business Transaction Services processes and activities fully into the
workload separation and workload balancing functions

1 Optimum performance and response times for a variable and unpredictable workload
1 Work routed away from afailing target region to an active target region

1 Opportunities for increased throughput and improved performance

1 Reduced risk of bottlenecks

1 Less operator intervention

2.3.1 0S/390 Sysplex environment

The OS/390 Sysplex environment enables parallel processing, which allows processing on multiple
S/390 CECsto occur concurrently.

2.3.2 Workload balancing
2.3.2.1 TCP/IP port sharing

TCP/IP port sharing provides a ssimple way of spreading workload over multiple CICS regionsin one
CEC by alowing multiple CICS regionsto listen on the same TCP/IP port number.

The TCPIPSERVICE CICS resource definition controls which port a CICS region will listen for
incoming requests; thisis further described in the CICS Resour ce Definition Guide , SC33-1684-02.

The SHAREPORT parameter of the PORT TCP/IP configuration statement is used to define the names
of all of the CICS regions which may listen on a particular port. TCP/IP port sharing requires eNetwork
Communications Server in OS/390 Version 2 Release 5 or later. For more information, see OS390
eNetworks Communications Server: |P Configuration , SC31-8513.

2.3.2.2 Dynamic DNS

With dynamic domain name server (DNS), multiple CICS systems are started to listen for requests on
the same port, using Virtual |P addresses. The host name in the request is resolved to an | P address by
MV S DNS and WLM services. By using dynamic DNS you are able to spread incoming requests across
multiple CICS regions that are running anywhere within a sysplex.

Implementing dynamic DNS is discussed in OS/390 V2R7.0 eNetwork Communications Server 1P
Configuration , SC31-8513.

2.3.2.3 SecureWay Network Dispatcher

IBM SecureWay Network Dispatcher manages TCP/IP traffic by allowing you to balance the load
across servers of different sizes and different operating systems. The Web site:
http://www.ibm.com/software/network/dispatcher/ has additional information about the use of the
SecureWay Network Dispatcher.

2.3.2.4 CICSPlex System Manager

CICS TS V1.3 provides extensions to CICSPlex System Manager (CPSM) which supports the dynamic
routing of requestsfor:

1 CICS Web support (CWS)

1 CICS Transaction Gateway (CTG)

1 External CICSinterface (EXCI) client programs

1 Any CICS client workstation product using External Call Interface (ECI)
1 Internet Inter-Object Request Block Protocol (I10P)

1 Any function that issues a CICS LINK request

Dynamic routing provides the ability to balance a workload among multiple CICS regions. CICSPlex:

http://www.ibm.com/software/network/dispatcher/

SM Managing Workloads , SC33-1807, describes the implementation of workload balancing using
CPSM.

2.4 Capacity planning

Capacity planning is an ongoing activity. Review of performance data and an understanding of the affect
of changes to the environment need to be understood so that new workloads can be modeled and their
impact on the current environment understood before implementation in a production environment.
Changing how a business process is performed may stress available system capacity beyond available
limits. Capacity planning involves the review of performance data from many disciplines, OS/390,

DA SD management, network administration, application design, CICS, and other platforms. The
redbook OS390 MVS Parallel Sysplex Capacity Planning , SG24-4680, and the CICS Performance
Guide, SC33-1699, discuss capacity planning in detail.

2.4.1LSPR ratios

IBM markets alarge range of computers, now more usualy known as Central Electronic Complexes
(CECs), with widely differing processing capacities or "powers'. Performing a capacity planning
exercise often involves the need to translate estimated or measured performance values from one model
of CEC to another. For example, a customer upgrading his machine to alarger model will often want to
estimate the cost of running an existing application on the new CEC, and will base this estimate on in-
house measured costs on his current machine, and then project or translate them to the proposed new
machine. Similarly, a customer adding a new application to an existing machine may have to base his
capacity planning estimate on available IBM performance data measured on a different model than his
current CEC, and needs away of coping with the differencesin machine in the estimation process.

To facilitate this trandlation between CEC models, IBM provides the Large System Performance
Reference (LSPR) tables. These are accessible on the Internet at
http://www.s390.ibm.com/Ispr/Ispr.html . The tables are updated at regular intervals, and cover IBM,
Amdahl, and HDS machines, and OS/390, VM, and V SE operating systems.

The LSPR method, and the tables based on it, operate in the following manner. One CEC model is
defined as the L SPR reference or base machine in performance terms. This base machineisrarely
changed, and you can expect the same base machine to be used for quite afew years. The base machine
is currently defined asthe IBM 9672-R15, which isa single processor air cooled machine based on
CMOS technology.

IBM has defined, for LSPR purposes, several separate workloads based around each of their principle
mainframe software products. For example, thereisatypical IMS workload, and atypical TSO based
workload, and, of most interest for our purposes, atypical CICS/DB2 workload. Each of these
workloadsis run on every machine in the LSPR tables, and, in simple terms, a measurement of the
amount of CEC processing time required to run each workload is made for each CEC model.

These CEC processing times are then compared to the cost of running the same workload on the base
9672-R15 CEC, and the comparisons are presented in the L SPR tables as a series of indices or ratios.
These ratios are in essence, for a given workload, an indication of the relative processing power of the
particular CEC, and are a measure of the rate at which it can execute machine instructions, compared
with the LSPR base CEC. The L SPR base CEC always takes the ratio value 1.0 for each workload, and
all the LSPR table valuesfor al the other CECs are relative to this. A ratio value of greater than 1.0
indicates a more powerful CEC than the base 9672 R15, and aratio of lessthan 1.0 indicates a less

http://www.s390.ibm.com/lspr/lspr.html

powerful CEC. A selected range of the LSPR ratios for the defined CICS/DB2 workload are shown
below in Table 1 . Note that the number of processors that a particular CEC model hasis given within
the LSPR tables in the column marked # CP .

Table 1: Selected LSPR ratios for CICS

[Processor Model|[# CP||CICS/DB2 L SPR|
9672-R15		1	1.00	
972-R25		2		1.81
9672-R35		3	2.58	
9672-R45		4	3.30	
972-Rs5		5	4.22	
9672-R65		6	4.88	
9672-R75		7	5.48	
9%72-R16		1	2.03	

So, for example, the tables indicate that, for the CICS/DB2 workload, the LSPR ratio for a9672-R25 is
1.81, indicating that the 9672-R25 is a more powerful CEC than the L SPR base machine, the 9672-R15.
Thisis because the 9762-R25 has two processors and the 9672-R15 has one. Thus, theoretically, the R25
is capable of executing twice as many machine instructions per unit time as the R15. However, you will
note that for the R25, the LSPR ratio is 1.81 and not 2.0; thisis because of a decrease in efficiency
involved in the very nature of multi-processing. In general, this reduction in efficiency increases as the
number of processorsin a CEC increases, and thisisreflected in the LSPR table values. So, for the
9672-R55, which isthe five processor version of the same CEC series, the CICS/DB2 workload LSPR
ration is 4.22 as opposed to 5.

2.4.2 CPU speed consider ations

However, when capacity planning with CICS, you must also consider the speed of the individual CPUs
used in your CEC. Thisis because CICS still makes extensive use of a specific TCB, the QR TCB, and
it may be that your CICS system is reaching maximum capacity of that TCB, thus limiting your
maximum CICS CPU utilization to just one CPU in the CEC. More details on how to do thisisgivenin
8.3, "Using too much CPU" on page 146 .

To increase the capacity of asingle CICSregion in this condition, it would be necessary to moveto a
CEC with amore powerful CPU (for instance, moving from a 9672-R55 to a 9672-R56). Moving to a
CEC with more processors, such as from a 9672-R55 to a 9672-R65, may give greater total
computational power, but this does not provide a higher individual CPU speed, which would be the
limiting performance factor for the CICS region in this situation.

Part 2: Performance analysis
Chapter List

Chapter 3: The 3270 green screen Trader application
Chapter 4: CWS with the 3270 Web bridge

Chapter 5: CWS with Web-aware presentation logic
Chapter 6: SSL with CWS

Chapter 7: The OS/390 CTG

Chapter 8: Conclusions and recommendations
Chapter 9: CICS Web capacity planning example

Chapter 3: The 3270 green screen Trader
application

Overview

In this chapter we describe the application that will be used in the capacity planning studies presented in
subsequent chapters. Like the majority of applications used on CICS systems today, it iswritten in
COBOL and uses the 3270 Basic Mapping Support (BMYS) interface of CICS to provide a menu-based
user interface for 3270 devices. Such applications are often referred to as legacy applications. The
program design employed in such legacy applicationsis often hierarchical, navigating through levels of
menus. Because they were designed to run on monochrome (green characters on a black background)
3270 devices, they were commonly referred to as "green screen” applications.

The huge numbers of CICS COBOL applications developed to run on 3270 devices produced a wide
variety of program structures and programming styles. Very often these programs contain a mixture of
business logic and 3270 BMS presentation logic. It has been a recommended approach for some time to
separate business and presentation logic, particularly because applications developed in this way can be
readily used in aclient/server environment. It also makes it smpler to extend such applications to
exploit access from the Web.

3.1 Introducing the Trader application

Our sample green screen application is called Trader. Trader allows authenticated users to trade shares,
that isto buy and sell sharesin agiven group of companies, as well as obtaining real-time quotes on the
value of their current holdings. Trader has been developed as a sample as part of an IBM CICS Web-
enablement service offering. Sample code and templates required to Web-enable the Trader using all of
the technol ogies documented in this redbook are available as additional materials from the ITSO Internet
site http://www.redbooks.ibm.com . We will be using Trader as our sample application throughout this
redbook for our CICS Web-enablement performance study and capacity planning exercises.

Trader iswritten in COBOL. It uses the VSAM access method for file access and the CICS 3270 BMS
programming interface. It is a pseudo-conversational application, meaning that a chain of related non-
conversational CICS transactions is used to convey the impression of a"conversation” to the user as he
goes through a sequence of screens that constitute a "business transaction”. A non-conversational CICS
transaction has one input and one output, so no task waits for user input as the user examines a screen
and enters responses into it. CICS provides several facilities for passing information about the current
state of the business transaction forward from one task to another. The most commonly used is the
COMMAREA data structure which can be associated with the terminal.

At each step the application presents a set of options. The user makes a choice, then presses the required
key in order to send their selections back to the application. The application performs the necessary

http://www.redbooks.ibm.com

actions based on the user's choice and presents the results together with any possible new options. The
application has a strict hierarchical menu structure which allows the user to return to the previous step
by using the PF3 key. The application consists of two modules TRADERPL, which contains the 3270
presentation logic, and TRADERBL, which contains the business logic.

3.1.1 Basic application structure

Figure 10 shows a summary of the flow of CICS tasks for our chosen "business transaction” to perform
asimple stock update operation. For the ten steps indicated, the following ten separate CICS tasks will

run.

1.

10.

Theinitial CICS transaction identifier (TRAD) is entered; thisinvokes the TRADERPL program,
which calls TRADERBL to build alist of companies for use in the next step. TRADERPL returns
the signon display.

A userid and password is entered and verified. TRADERPL then returns the company selection
display.

A company is selected, and TRADERPL returns the main options display.

Option 1 for aNew Real-Time Quote is entered. TRADERPL calls TRADERBL, which reads the
company and customer files. TRADERPL then returns the real-time quote display.

PF3 is pressed to exit back to the main options display, invoking only TRADERPL to send that
display.

Option 2 for Buy Sharesis entered, and TRADERPL isinvoked, which returns the buy shares
display.

The number of sharesto purchaseis entered. TRADERPL calls TRADERBL which reads the
company file and updates the stock holding in the customer file. TRADERPL then returns the
main Options display.

Option 1 for aNew Real-Time Quote is entered (asin step 4). TRADERPL calls TRADERBL,
which reads the company and customer files. TRADERPL then returns the real-time quote

display.
PF3 is pressed to exit back to the main options display.

PF12 is pressed; the application terminates by TRADERPL sending afinal SEND TEXT message
to the screen on completion.

o
\
!
L]
|
]

p - Y

LY
i - b}
{ :: 3 -
b - 5

%

s ™ 4 2 - e \
\ J i \\\ \ —
i . Ty s \ company]
:) | g fila
T 4 ey
-(__.—\._ ."’_‘_.,——._“I
I ':I 1] - [b A
e - DU b

-

hila
:: 7 I - = /\-‘_ —

Y

e W
Y
4
v
N

b
S
S
L]

(>
e oy
—
:\M j 10 o

- TRADERPFL TRADERBL

Trader Apglication

Figure 10: 3270 Trader application summary
3.1.1.1 Detailed application flow
In this section we describe the Trader application in more detail:

1. Theprogram TRADERPL isinvoked on a 3270 capable terminal by entering theinitial CICS
transaction identifier (TRAD). TRADERPL calls TRADERBL, passing an inter-program
COMMAREA of 400 bytes. TRADERBL expects the COMMAREA to contain arequest type and
associated data. There are 3 request types. Get_ Company to return a company list, Share Valueto
return alist of share values, or Buy_Sell to buy or sell shares. In this step the request type is
Get_Company .

When TRADERBL receives a Get_Company request, it browses the company file and returns the
first four entriesto TRADERPL. At this point the user has not entered any request, but the
application assumes that a Get_ Company request will be following. TRADERPL then sends the
signon display (T001 shown in Figure 11), which prompts for a userid and password. The list of
companiesis stored in the COMMAREA associated with the terminal when the TRAD transaction
ends, so that it will be available at the next task in the pseudo-conversational sequence.

Share Tradi ng Denonstration TRADER. TOO:

Share Tradi ng Manager: Logon

Enter your User Nane:

Enter your Password:

PF3=Exi t PF12=Exi 1

Figure 11: Trader signon display

. The next transaction invokes TRADERPL, which receives the signon display (T001) and the
saved COMMAREA from step 1. Using the company data acquired in step 1, TRADERPL sends
the company selection display (T002, shown in Figure 12), the format of which isshownin
Figure 12 . TRADERPL then returns, specifying the next transaction to run and the associated
COMMAREA.

Share Tradi ng Denonstration TRADER. T002

Share Tradi ng Manager: Conpany Sel ection

1. Casey_Inport_Export
2. dass_and_Luget Plc
3. Headworth_El ectri cal

4. | BM

Pl ease sel ect a conpany (1,2,3 or 4)

PF3=Ret urn PF12=Exi t

Figure 12: Company selection display

3. The user selects the company to trade from the Company Selection display, and presses Enter. The
progran TRADERPL isinvoked and sends the Options display (T003, shown in Figure 13) to the
terminal. The user can now decide whether to buy, sell, or get a new real-time quote. TRADERPL
returns, specifying the next transaction to run and the associated COMMAREA.

Share Tradi ng Denonstration TRADER. TOO3

Share Tradi ng Manager: Options

1. New Real -Tinme Quote
2. Buy Shares

3. Sell Shares

Pl ease select an option (1,2 or 3):

PF3=Ret urn PF12=Exi

Figure 13: Options menu display

4. Intheflow of our business transaction, the user then selects Option 1 and presses Enter.
TRADERPL isinvoked and determines that the user's request is a Share_Value request type.
TRADERPL calls TRADERBL, passing the request type and the company selected earlier.
TRADERBL reads the customer file to determine how many shares are held, then reads the
company file to determine the price history, and returns the information to TRADERPL.
TRADERPL uses this data to build a Real-Time Quote display (T004) asillustrated in Figure 14 .
This display shows the recent history of share values for the company chosen, the number of
shares held with this company, and the total value of these shares. TRADERPL returns, specifying
the next transaction to run and the associated COMMAREA data.

Share Tradi ng Denbnstration TRADER. TO04

Share Tradi ng Manager: Real -Ti me Quote

User Nane: TRADER

Conpany Nane: | BM

Shar e Val ues: Comni ssi on Cost:
NOW 00163. 00 for Selling: 015
1 week ago: 00157. 00 for Buying: 010

6 days ago: 00156. 00

5 days ago: 00159. 00

4 days ago: 00161. 00

3 days ago: 00160. 00

2 days ago: 00162. 00 Nunber of Shares Hel d: 0100

1 day ago: 00163. 00 Val ue of Shares Held: 000000000.00
PF3=Ret urn PF12=Exi 1

Figure 14: Real-time quote display

5. The user now presses PF3 to go back to the options menu . TRADERPL isinvoked and sends the
Options display (T003) to the terminal (repeating the actions of step 3) and returns, specifying the
next transaction to run and the associated COMMAREA data.

6. The user now requires to purchase shares, so selects option 2 and presses the Enter key. Program
TRADERPL receives map TO03 and determines that the user wants to buy shares, and sends the
Shares-Buy display (T005) shown in Figure 15 . TRADERPL returns, specifying the next
transaction to run and the associated COMMAREA.

Share Tradi ng Denonstration TRADER. TO05

Share Tradi ng Manager: Shares - Buy

User Nane: TRADER

Conpany Nane: | BM

Nurmber of Shares to Buy: 100

PF3=Ret urn PF12=Exi 1

Figure 15: Shares — Buy display

7. Program TRADERPL receives the TO05 screen and builds aBuy Sell request COMMAREA
which is passed to programn TRADERBL. TRADERBL reads the company file and then performs
aREAD for UPDATE and REWRITE to the customer file to update the customers share holdings.
The success of the request isreturned to TRADERPL in the COMMAREA, and TRADERPL
sends the Options display (T003) reporting the successful buy to the user. TRADERPL returns,
specifying the next transaction to run and the associated COMMAREA.

8. Next the user checks his shareholdings by repeating step 4.

9. The user returns to the options screen by repeating step 5.

10. The business transaction is completed by the user pressing PF12, which performs a SEND TEXT
to write a message to the terminal reporting the session is complete. TRADERPL then executes
the final RETURN command. No COMMAREA is specified because the pseudo-conversation is
over and there is no conversation state data to retain.

3.1.2 Application characteristics influencing per for mance

Let us now look at the different characteristics of the Trader application influencing performance. The
Trader application is modular and well structured, in that the presentation logic (3270 and BMS
commands) isin a separate module to the business logic. Thus we can examine the factorsinfluencing
presentation logic costs and business logic costs separately.

3.1.2.1 Presentation logic
These are the factors that will affect CPU usage in the presentation logic:
Number of network 1/O operations
1 The number of network 1/0 operations is related to the number of SENDs and RECEIVEs (both
BMS and native 3270 commands). For our particular business transaction sequenceillustrated in
Figure 11 on page 40 , we have nine pairs of BMS maps received and sent, and aBMS RECEIVE

with a3270 SEND in the final transaction. These costs will be partly incurred in CICS and partly
inVTAM.

State management

1 Running multiple pseudo-conversational transactions requires a degree of state management by
CICS. State data, covering the "state" of the terminal and any user-specific data areas (commonly
inaCOMMAREA or in aCICS Temporary Storage queue) is stored in memory managed by
CICS. Thus an increasing number of users will require an increasing amount of memory to be
allocated. This memory is primarily stored in the CICS extended dynamic storage areas (EDSA)
and should be considered when configuring the SIT EDSALIM option for the CICS region.

3.1.2.2 Businesslogic
Now we will look at the factors affecting business logic CPU usage.
Businesslogic CPU usage

1 Thebusinesslogic in the Trader application is that portion of the application that gets the
information, and processes changes that the user requests, including file access and update. In our
example it can be easily quantified using CICS monitoring facilities. CICS monitoring data can be
used to determine the CPU utilization of each CICS task. The presentation logic of each task is
very similar, and therefore this part of CPU cost is essentially constant across all tasks. It equals
the cost of atask that does not execute any business logic, such as step 2. Hence we can determine
the cost of the businesslogic in each step, by subtracting the cost of atask that does no business
logic, from the total for atask that does execute business logic.

Number of disk I/O operations

1 Anincrease in transaction rate may create excessive demands on the 1/O subsystem and it may not
be able to match the rate of increase of requests. If this happens, CICS will be unable to service
higher transaction rates as tasks wait for a response from the 1/0 subsystem. When running many
user requests in parallel, there will of course be an increasing number of 1/O operationsto files.
The efficiency of performing 1/0 operations may decrease as the rate of requests increases, due to
the limited bandwidth inherent in any physical 1/0 device, and to the serialization and locking
required when updating recoverable resources.

Serialization characteristics (enqueue/dequeue)
1 If the Trader application uses arecoverable file, then the update operation resultsin an implicit

enqueue/dequeue. Under an increased load this could lead to an I/O bottleneck, as transactions
gueue waiting to update thefile.

3.2 Measured CPU usage

In order to understand the CPU cost of running the 3270 version of the Trader application, we undertook
anumber of CPU measurements to get a baseline from which to estimate the delta costs of different
methods of Web-enabling the Trader application.

First we measured the CPU usage for running one Trader business transaction, as described in Figure 10
on page 39 . Thiswas undertaken using CICS monitoring. The results are shownin Table 2 .

Table 2. CPU costs from CICS monitoring for 3270 Trader application

|CICStask||Presentation logic (CPU ms)||BusinessIogic (CPU ms)||TotaI (CPU ms)|
L 1 | 0.8 [4.1 L 49 |
L 2 | 0.8 [0.0 L 08 |
3	0.8	0.0	0.8
4	0.8	4.1	4.9
5	0.8	0.0	0.8
L 6	08 [0.0 L 08		
L 7	0.8 [4.8 L 56		
L 8	0.8 [4.1 L 49		
9	0.8	0.0	0.8
10	0.8	0.0	0.8
Totals		8.0	17.1

All numbers represent CPU milliseconds consumed by the CICS address space when running on an IBM
9672-R55 processor. The business logic component is effectively the path-length in program
TRADERBL and the presentation logic is that in TRADERPL

From these numbers, we can see that when using the 3270 version of Trader, the majority of the CPU
cost (68%) occursin the business logic, and these costs are dominated by the CICS tasks that perform

file1/0O operations.

With the scalability offered by CICS, these costs should increase in alinear fashion when running many
user sessionsin parallel. To verify the scalability of the Trader application, aworkload consisting of
instances of the Trader business transaction sequence was generated using the Teleprocessing Network
Simulator (TPNS); and the CPU consumed by CICS, VTAM, and the overall total were measured using
RMF monitoring. RMF monitoring records the CPU charged to each address space, along with the total
used in the whole OS/390 system.

These costs are documented in Table 31 on page 170 and illustrated graphically in Figure 16 . The
figures plotted are the % usage of asingle R55 CPU with a maximum of 500% available. The CPU
usage for the CICS and VTAM address spaces, along with the total CPU of the OS/390 system are
plotted. In Figure 17 we plot the CPU cost in ms per transaction, against increasing workloads, in order
to illustrate the scalable nature of 3270 CICS transactions.

3270 Trader workload
Thrcughput va, CPU usage

z

B O8G0 otal
* CICE
b WTAM

z
"

% usage of sivgle AES CPU
= E
]

o

0
=

12 T4 18

Throughpui
[Dumirass Imreactions'sscondy

Figure 16: 3270 Trader workload, throughput vs. CPU usage

3270 Trader Workload
Throughpat vs. CPU matransaction

® Tolal CPU
= = < * cIcs
80 L & YTAM

eSS CPU rrestian

B a Ll " 12 13 14 i5
Trucughput

Flaatialorsd: L dc Lo v el el

Figure 17: 3270 Trader workload, throughput vs. CPU mg/transaction

From Figure 17 it can be seen that the Trader workload scales very efficiently, and the CPU cost per
transaction actually falls slightly as the throughput increases. Thisis due to the efficiencies gained at
higher throughputs. It can also be seen that the proportion of CPU time spent in VTAM is consistently
very low (approximately 2% of the total CPU used on the OS/390 system).

Using the plot in Figure 16 we produced alinear fit equation to calculate the CPU cost of the Trader
application based on a given throughput.

A linear fit equation is of theform (y = k1 * x + k2). It predicts the value of y (in our case, CPU usage)
based on the value of x (in our case throughput) and two constants, k1 and k2. The constant k1 isan
indication of the slope and k2 the y-axis intercept. The degree of fit is reported by the R-square value, a
value of 1.0 indicating a perfect fit. We use several linear fit equations throughout this study, all of
which were produced using the Series Trend function in Lotus 1-2-3.

The linear equation for predicting the CPU cost of the 3270 Trader application is given in Figure 18
along with the predicted cost for athroughput of 10 business transactions per second. The R-square
value for this equation was 0.994. Note that we will continue to use athroughput of 10 business
transactions per second in all our capacity planning estimations later in this redbook.

Total CPU used in OS/390 system when running Trader:

Total CPU ns = (31.5 * throughput) + 137

Thus at athroughput of 10 business transaction/second:

Total CPU nms = (31.5 * 10) + 137 = 452 CPU ns

Throughput = business transactions per second

Figure 18: Linear equations for 3270 Trader CPU usage

Y ou should note that the figures reported by CICS monitoring (Table 2 on page 45) for one Trader
business transaction (25.1 CPU ms) are considerably less than the CPU usage per transaction in Figure
17 on page 47 (approximately 35 CPU ms). Thisis because the figures for CICS monitoring do not
include general overhead of running the CICS region, just the individual costs associated with invoking
a specific program.

Of thistotal 452 msfor running Trader using the 3270 interface, we can calculate how much should be
allocated to the different OS/390 components. We do this by using the relative proportions reported for
each component in our test measurements, as found in Table 31 on page 170 . The throughput of 10.6
business transactions/second was chosen, asit is the closest to our defined rate of 100 CICS tasks per
second. Thiscalculation isillustrated in Table 3.

Table 3: CPU percentage breakdown for Trader via 3270 Web bridge

Component Per centage of total per CPU usagefor 10 businesstransactions (CPU
component ms)
| CICStotal | 76.9% I 348 |
| VTAM || 10.0% | 10 |
0S/390

0
other 20.7% 94

| To | i [452 ||

3.3 Trader performance

Using the results of our performance tests from Table 3 on page 48 we have plotted the CPU usage for
each component when running the 3270 Trader application. Thisis shown in Figure 19 ; the figures
plotted are CPU ms on an 9672-R55, for running 10 invocations of the Trader business transaction. Thus
10 Trader business transactions equate to 100 CICS tasks when using 3270 green screens.

Breakdown of 3270 trader CPU usage

T,
B, CICS mamineds oge
B30 plhee B

CACE qehae
GalS 270 pepsentaton logic

Figure 19: Breakdown of CPU usage for 3270 Trader application

Chapter 4: CWSwith the 3270 Web bridge

Overview

In this chapter we discuss the Web-enabling of the Trader application using the 3270 bridge function of
CICS Web support (CWS). We will refer to this function as the "3270 Web bridge". We then present a
set of performance studies of asimple 3270 test application Web-enabled via the 3270 Web bridge, and
go on to use this information to perform capacity planning for Web-enablement of the Trader
application.

4.1 Converting the Trader application

The 3270 Web bridge allows for the Web-enablement of existing CICS 3270 applications with little or
no change to the original 3270 based application. In the case of the Trader application, no changes were
required to the presentation or business logic, as all the commands used were compatible with the
restrictions imposed by the 3270 Web bridge. For further details on what changes may be necessary to
an application, refer to Revealed! Architecting Web Accessto CICS, SG24-5466.

4.1.1 Basic application structure

The Trader application consists of seven BMS maps. All BMS maps were converted to HTML
templates by reassembling the BM S source with the BMS TEMPLATE option provided as part of CWS.
This provides abasic HTML version of the original green screen; further customization can be carried

out to provide a more modern graphical user interface (GUI). Any such customization is unlikely to
have a significant impact on performance, as the underlying application design will remain unchanged.

The flow of the 3270 Web-bridge-enabled Trader application isillustrated in Figure 20 and described
below. It is essentially the same as the 3270 green screen version of Trader, since the 3270 Web bridge
allows you to Web-enable your 3270 application with little or no modification.

1. Theinitia transaction isinvoked through the 3270 Web bridge from a Web browser using a URL
of the form http://myhost/cics/cwba/dfhwbtta/trad . This invokes the CWS module DFHWBTTA,
which starts the TRAD transaction under a 3270 bridge environment. CICS creates avirtual 3270
terminal called a 3270 bridge facility, and the 3270 transaction then executes under the control of
the Web bridge exit (DFHWBLT), unaware of the fact that the 3270 bridge facility is an emulated
rather than areal 3270 terminal. TRADERPL callsthe TRADERBL module in order to read the
customer file. Then TRADERPL outputs the signon map, which is converted to HTML by CICS
using a pre-generated HTML template.

2. Thesignon HTML pageis sent back to CICS, and TRADERPL isinvoked. The HTML version of
the company selection display is sent to the Web browser.

3. A company is selected, and TRADERPL returns the main options display.

4. A New Real-Time Quote is selected, and TRADERPL calls TRADERBL, which reads the
company and customer files, and then returns the real time quote display.

5. PF3isselected to exit back to the main options display, invoking only TRADERPL.

6. Option 2 for Buy Sharesis selected, and TRADERPL invoked, which returns the buy shares
display.

7. The number of sharesto purchaseis selected. TRADERPL calls TRADERBL, which reads the
company file and updates the stock holding in the customer file. TRADERPL then returns the
main options display.

8. A New Real-Time Quoteis selected (asin step 4). TRADERPL calls TRADERBL, which reads
the company and customer files. TRADERPL then returns the real time quote display.

9. PF3isselected to exit back to the main options display.

10. PF12isselected, and the application terminates by TRADERPL, sending afinal SEND TEXT
message to the screen on completion.

Aswith the 3270 version of Trader, we will define these ten CICS tasks as constituting a single business
transaction.

Wab User CHZS VEAM
=11 4 -
—
= ¥ ""'_'_'_'_'—._'_._'_ Y|
28 i - i Lo II'.
e
- e 1
3 |
1 -
P B | ———t \
i -~ 1
N — &l | N
= .l == | |4 companr
-l . S I '
e L
;..-—'—'"_'_._” - -
Gt =L A
i [.rf e |
— | | i
b = . = g :’l
T = I A A
| - ¥
— I/
S — A
9 == 7
B — - -
i .-.-._-.-. ==
sa— TR |
S e
1ol -
3270 Web
| bridge TRADERPL TRADERBL
Trader Apalicalion

Figure 20: 3270 Web bridge Trader application flow
4.1.2 Application characteristicsinfluencing performance

In this section we will discuss the factors which impact the performance of applications using the 3270
Web bridge.

Business transaction flow

The flow of the Trader application isidentical when Web-enabled through the 3270 Web bridge, to the
flow of Trader as a 3270 green screen application. When using the 3270 Web bridge to Web-enable an
application, there are several management functions that impact the CPU usage of the application.

One of the key differences between Trader as a 3270 application and Trader as a Web-enabled
application is how application state is maintained. In a 3270 environment, state data is naturally
maintained using the CICS terminal. This allows the application to "know" its location within a pseudo-
conversational chain and to store or pass data between different tasks in the pseudo-conversation. In
contrast, the Internet is a stateless environment. Thus there is no permanent connection established
between a Web browser and CICS. Thereis also no real 3270 device with which to associate session
data, since the transaction is run under the control of a"3270 bridge facility". Instead, the 3270 bridge
uses state tokens in hidden HTML fields to keep data for one user separate from others.

3270 bridge facility management

The 3270 Web bridge is responsible for managing these virtual 3270 devices. It does thisusing 3270
bridge facilities, which are created at the start of a pseudo-conversation and destroyed at the end. The

3270 bridge facility looks to the underlying application like atrue 3270 device, including the ability to
have associated state data, such as the next transaction identifier and a COMMAREA. The 3270 Web
bridge uses the state tokens to associate the correct 3270 bridge facility with the correct user when new
input arrives.

The 3270 Web bridge assumes that the user is beginning a new business transaction if the request does
not carry state tokens from a previous interaction. The 3270 Web bridge regards the end of a pseudo-
conversational chain as the absence of a"next transaction identifier” on the last CICStask. The SIT
keep-time parameter, configured using the WEBDELAY keyword, tells CICS how long to keep a 3270
bridge facility that remains inactive, so that if the user loses connectivity (or interest) before the end of
the pseudo-conversational chain, the 3270 bridge facility is not retained indefinitely.

Impact of pseudo-conversational chain length

The length of a pseudo-conversational chain within an application can affect CPU usage significantly. If
the user is permanently held within the pseudo-conversation, then the state data and 3270 bridge facility
are held continuously. Thisresultsin less work for the 3270 bridge garbage collector and shorter
pathlengths within the 3270 bridge facility and state data management routines.

3270 bridge gar bage collection

Garbage collection is the CICS management routine which is responsible for purging control blocks
associated with Web state data. For each 3270 bridge facility created, the 3270 bridge maintains Web
state data within CICS storage. As more Web state data is managed by the CPU usage associated with
CWBG, the garbage collection transaction, will also be higher.

CWBG is started periodically. When it runs, it calls the CWS State Manager, which runs through the
chain of Web state blocks destroying unused or timed out blocks, and flagging blocks that haven't been
used for the time-out period to get destroyed on the next cycle. The frequency of garbage collection is
controlled through the WEBDELAY SIT parameter, which is discussed below.

WEBDELAY (time_out,keep_time)

WEBDELAY isaCICS System Initialization Table (SIT) parameter which controls 3270 bridge facility
time-out and application state data keep-time.

1 Time_out is the maximum time, in minutes, that a CICS task running under a 3270 bridge facility
isallowed to remain in atermina wait state before being timed out.

1 Keep_timeisthe amount of time, in minutes, during which application state data is maintai ned.
K eep-time also controls the frequency of garbage collection.

Setting the WEBDELAY parametersto low valuesis advisable if the transaction rate is high and the
number of CICS tasks within a business transaction is low. This avoids potential performance
degradation caused by large amounts of 3270 bridge facility and state data being managed. However,
setting WEBDELAY too low may cause bridge facilities and state data to be timed out before a business
transaction has completed. In all our tests with the 3270 Web bridge, we set WEBDELAY to its lowest
setting of (1,1). This gave good results in our environment, and the delay of one minute was greater than
the think timein any of our Web client test scripts. Refer to A.2.2 , "CICS Web support with the 3270
Web bridge" on page 164 , for full details of our test configuration.

Persistent HTTP connections

The use of persistent HT TP connections (often termed KeepAlive), whereby subsequent HT TP sessions
can reuse the underlying TCP/IP socket connection, will aid the performance of CWS applications.
Support for persistent HTTP connections is enabled within CICS by using the SOCKETCLOSE
keyword on the TCPIPSERV ICE definition. Support is enabled with the OS/390 Web server using the
directives PersistTimeout and MaxPersistRequest . The time-out period is counted from the receipt of
the last HTTP datastream from each Web browser. Note that the Web browser client must also support
persistent connections, and thisincludes an HTTP application proxy server if oneis used.

We used an HTTP connection time-out of 10 secondsin all our 3270 Web bridge tests; this was greater
than the think time in any of our test scenarios, and so alowed a pseudo-conversational chain to re-use
the same TCP/IP socket connection. However, you should note that enabling persistent connections has
the affect that each Web attach transaction (CWXN) remains long running until the time-out expires or
the Web browser client closes the connection. Thiswill require a higher number of CICS tasks to be
running in your CICS region, and you should balance this against the performance benefits. We tested
the effect of persistent HTTP connectionsin our Web-aware tests, which are detailed in Chapter 5,
"CWS with Web-aware presentation logic" on page 65 .

HTML templates

The placement of HTML templatesis controlled through a DOCTEMPLATE CICS resource definition
and has a potential impact on performance. The fastest |oad times for these HTML templates can be
achieved by storing them as CICS load modules. These modules are managed like other loaded CICS
programs and may be flushed out by program compression when storage is constrained. For more
information on how to store HTML templates as CICS load modules, see the redbook, CICS
Transaction Server for OS390 Version 1 Release3: Web Support and 3270 Bridge , SG24-5480.

SEND TEXT

The CICS SEND TEXT command is arelatively costly command when executed through the 3270 Web
bridge, as compared to using BMS. The reason for thisis that the data stream contained in the SEND
TEXT istrandated between 3270 and HTML character-by-character asit is sent to the 3270 bridge
facility. The CPU overhead associated with each SEND TEXT isthus greater than the CPU usage of a
BMS commands. BMS commands are less CPU intensive because they use pre-generated HTML
templates which can be cached in memory as CICS load modul es.

4.2 Performance tests using the 3270 Web bridge

In our performance tests we used a simple BM S test application running under the 3270 Web bridge.
This program consisted almost entirely of 3270 presentation logic, and thus was not the same as areal
life application such as Trader, which is likely to spend more time in business logic than presentation
logic. In the following section we present our testing methods and results when using our smple BMS
test application. We then go on to detail a capacity planning methodology, and show you how to use our
results to estimate the CPU usage when Web-enabling areal life application such as Trader.

4.2.1 Test environment

The test environment was equipped with sufficient hardware (processor, memory, DASD, network
bandwidth) to eliminate any constraints. The operating system was OS/390 v2.7 together with CICS

Transaction Server V1.3. Full details of the software levels and parametersin effect during testing are
listed in Appendix A "Test environments' on page 161 . The test system hardware configuration is
illustrated in Figure 21 .

QALoad Web simulalor Test O5/390 image

— [

- .
7 ATM Token Ring ——
LY amulation !

g o

AlX 5P2 5 CPULPAR, 9672-R55

Web cws | a27a
browser - 3970 - L apphication
cliants Web bridga

—— CICS region |

Figure 21: 3270 Web bridge test environment
4.2.2 Test methodology

For the 3270 Web bridge tests in this chapter, Web browsers were simulated using the Compuware
QALoad product. These were run from two nodes of an AlX SP2 connected via Token Ring emulation
over an ATM network to the S/390 processor, asillustrated in Figure 21 on page 57 . The think time was
set to different values and the workload allowed to settle before a five minute measurement interval was
sampled using the OS/390 RMF feature. This process was repeated for different think timesto obtain
results for five throughput rates from approximately 15 up to 100 Web requests per second. All the tests
used 128 simulated Web browser clients.

Our 3270 test application was asimple BMS 3270 application. It consisted of apair of CICS 3270
transactions which sent and received BM S maps in a pseudo-conversational mode. The BMS map
contained some identifying header information and two 50 byte data fields. The program contained
virtually no business logic, and as such, was only designed to test BM'S data transmissions.

This workload was run in both a continuous, and a non-continuous, 3270 pseudo-conversation. In the
non-continuous pseudo-conversation there are two CICS tasks in every pseudo-conversation. The first
task sends a BM S map, and then initiates the second task using the RETURN TRANSID command. The
second task receives the BMS map, issues afinal SEND TEXT command, and then terminates. Thus,
during thistest, there is a continuous cost of creating and destroying 3270 bridge facilities as pseudo-
conversations start and stop.

In the continuous pseudo-conversation, the second task was modified to issue aRETURN TRANSID
command for the first transaction, such that the pseudo-conversational chain never finishes. Since a
3270 bridge facility is created on the first transaction in the pseudo-conversation and not destroyed until
the end of the pseudo-conversation, there were no bridge facilities created/destroyed for the duration of
the measurement, which was taken once the workload had settled.'

All our tests with the 3270 Web bridge used a CWS direct connection; it is also possible to use the CICS

WebServer Plugin in conjunction with the 3270 Web bridge, as described in 1.2.4 , "3270 Web bridge"
on page 12 . If you wish to use the CICS WebServer Plugin, you should refer to Chapter 5, "CWS with
Web-aware presentation logic" on page 65, where we give details of our performance measurements
using the WebServer Plugin with Web-aware presentation logic.

4.2.3 Test results

In this section we present a summary of the performance measurements of our smple test BMS
transaction using the 3270 Web bridge to illustrate the important points from the data. All the actual test
data can be found in Appendix B "Performance data’ on page 169 . Refer to Table 32 on page 171 and
Table 33 on page 171 .

We did not report transaction response times in our test results, but IBM internal measurements have
shown significant improvements in the 3270 Web bridge responsetime in CICS TS V1.3 as compared
CICSTS V1.2, dueto the restructuring of CWSin CICSTSV1.3.

Figure 22 illustrates the CPU usage for our test of a non-continuous pseudo-conversation. Figure 23
illustrates how the total OS/390 CPU usage varied between the non-continuous pseudo-conversation and
the continuous pseudo-conversation scenarios. In both graphs, the figures plotted are the % usage of a
single R55 CPU with a maximum of 500% available.

CWS 3270 Web bridge
Mon-continmous. pRaudo-Sommraalhon
Thesughpaut va, CPU ueage

" OST00 weal
+ GIGS
& TCPAP & VTAM

% wEage o A singhe RSS CPU

Tretusghput

(Wieh requasis’sacond)

Figure 22: 3270 Web bridge, non-continuous pseudo-conversation

CW3S 3270 Web bridge
Coniucun VE. R continucus pessto-oonvreraaton
Throughput ve. lotal CPU usage

i

n B Non-CONMINURLUS
* PONEAUOLUS

i utg of single RE5S CPU
| |

Figure 23: 3270 Web bridge, continuous vs. non-continuous pseudo-conversation

Figure 23 illustrates that the CPU usage associated with a 3270 Web-bridge-enabled transaction is
primarily within the CICS address space. The CPU usage associated with TCP/IP becomes a decreasing
portion of the total CPU usage as the throughput increases.

The higher CPU usage of a hon-continuous over a continuous conversation can be clearly seen in Figure
23 . Since both workloads sent and received the same amount of data, the higher cost of a non-
continuous pseudo-conversation is attributabl e to the increased overhead of managing bridge facilities
and state data when using a non-continuous pseudo-conversation.

4.3 Capacity planning for the 3270 Web bridge

In this section we use the results of our previous performance tests to create a capacity planning
methodology for estimating the CPU usage of a Web-enabled CICS application using the 3270 Web
bridge. We then use this methodol ogy to estimate the CPU usage when the Trader application is Web-
enabled using the 3270 Web bridge. We aso present the results of atest to confirm this capacity
planning estimate.

4.3.1 Capacity planning methodol ogy

Using our the results of our performance tests for the 3270 Web bridge, we have calculated a general
increase formula for Web-enablement using the 3270 Web bridge. This formula uses the length of the
3270 pseudo-conversational chain as akey factor and provides a different increase, depending on the
length of the pseudo-conversational chain. This formula has been subject to separate validation using

several different 3270 workloads with differing amounts of screen data, and has been found to give good
results. The formulais documented in Figure 24 .

Continuous pseudo-conversation:

New total CPU ns = Original 3270 total CPU nms + (throughput * 8.54)

Non-continuous pseudo-conversation:

New total CPU ns = Original 3270 total CPU ns + (throughput * 11.1)

Total CPU = all CPU consuned in OS5/ 390 LPAR in one second

Thr oughput = CI CS tasks per second

Figure 24: 3270 Web bridge general increase formulae

We will use the continuous pseudo-conversation formulafor estimating the Trader workload, since
Trader has ten CICS tasks in one business transaction, which is arelatively high number. If you arein

doubt about which formulato use, we would advise using the non-continuous pseudo-conversation, as
thiswill give more margin for error.

4.3.2 Capacity planning estimate

Applying the general increase formulain Figure 24 on page 61 to Trader, we anticipate the increase
represented in Table 4 for running 10 Trader business transactions per second via the 3270 Web bridge.
The original costs of running the Trader application in a 3270 environment were calculated using the
linear equations in Figure 18 on page 48 .

Table 4. Estimated CPU increase for Trader via 3270 Web bridge

Old total (CPU Throughput 3270 Web bridge general New total (CPU
ms) (tasks/sec.) increase ms)
| 452 I 100 I 8.54 | 1306

Of thistotal 1306 ms for running Trader using the 3270 Web bridge, we can estimate how much should
be allocated to the different OS/390 components. We do this by first deducting the known cost of 171
ms for the business logic in TRADERBL, and then using the relative proportions reported for each
component in our test results. We used our results from a non-continuous pseudo-conversation in Table
32 on page 171 . A throughput of 111.8 Web requests/second was chosen, as it isthe closest to our
defined rate of 100 CICS tasks per second (or 10 business transactions per second). This calculation is
illustrated in Table 5 .

Table 5. CPU percentage breakdown for Trader via 3270 Web bridge

Component Per centage of total per CPU usagefor 10 businesstransactions
component component (CPU ms)
CICS
TRADERBL) 17l
| ClCSother | 81.8% | 928
TCP/IP &
VTAM 15.2% 173
| 0S/390 other || 3% | 34
| Total | - | 1306

4.3.3 Confirming our estimate

In order to quantify our capacity planning estimate, we actually measured the CPU usage of the Trader
application Web-enabled using the 3270 Web bridge. We determined from CICS monitoring data that a
single business transaction using persistent HT TP connections consumed, on average, 93 CPU ms
within the CICS address space. This included the cost of the CWBA (alias) and CWBG (garbage
collection) transactions. Our estimation, documented in Table 5 on page 62 , shows a usage of 171+928
= 1099 CPU ms per 10 business transactions that is allocated to CICS, which equates to 101 CPU ms
per individual business transaction. This measured value of 93 CPU msis 8% less than our estimate of
101 CPU ms. Thisindicates that our capacity planning methodology gives good results for the 3270
Web bridge.

4.4 Trader performance comparison

Using our capacity planning estimate in Table 5 on page 62 , we have compared the CPU usage of the
Trader application running viathe 3270 Web bridge to the original costs of the 3270 version. Thisis
illustrated in Figure 25 . The figures plotted are CPU ms on an 9672-R55, for running 10 invocations of
the Trader application.

2270 Trader ve. 3270 Web bridge Trader
CPU unage Breakdown

g

R
; Ll TCRAP & VTAM
* B CICE ohor
| B CICE bugingss
b=

8

R55 CPU ma
10 Tradar Duosiness iranesilion

3770 Wb bricige Trackr

Figure 25: Capacity planning estimates for Trader via 3270 Web bridge

This graph illustrates that when using the 3270 Web bridge, the cost of the business logic portion of the
application remains constant, but the cost of the presentation logic (CICSother) increases
approximately five fold. Thisis due to the high overhead of emulating and managing the 3270
environment within CICS. This additional CPU usage would mean that on our 9672-R55 processor, the
CICS region CPU usage would theoretically exceed 1000 CPU ms or 100% of one CPU. However, this
is greater than the maximum capacity of a single CICS region. Solutions to this situation are discussed
further in 8.3, "Using too much CPU" on page 146 .

In summary, the ease of implementation of a 3270 Web bridge solution needs to be balanced against the
relatively high CPU cost of such a solution. Alternative non-3270 based Web-enabling solutions are

discussed next in Chapter 5, "CWS with Web-aware presentation logic" on page 65 and Chapter 7 ,
"The OS/390 CTG" on page 103 .

Chapter 5. CWSwith Web-awar e presentation
logic

Overview

In this chapter we summarize how to provide Web access to the business logic of the Trader application,
using CICS Web support (CWS) together with new Web-aware CICS presentation logic. We then
present a set of performance studies of for various laboratory workloads and go on to use these figures to
perform capacity planning for Web-enablement of the Trader application.

5.1 Converting the Trader application

Two programming tasks are required when Web-enabling the Trader application using CWS and Web-
aware presentation logic. Thisisin contrast to the CWS 3270 Web bridge solution, which requires little
Or No programming.

First, we must separate the 3270 presentation logic from business logic in the application. Thisis easy to
do in the Trader application, because the business logic and presentation logic are isolated in separate
modules, TRADERBL and TRADERPL, respectively. In many legacy CICS applications, thisis not the
case, and separating the business and presentation logic may require extensive re-engineering. It is,
however, an essential part of using this and other CICS Web-enabling techniques and offers several
benefits which should become clear throughout this chapter. Figure 26 illustrates this required division
of presentation and businesslogic.

=
] —— TRADERPL

- “ie. | 3270 presaniation

3270 terminal _ logic TRADERBL

business logic

| HTTP
. = presentation logic

Web browser CICS application

Figure 26: Separation of businesslogic and presentation logic

The second programming task is to supply the HTTP Web-aware presentation logic, which will have to
perform two new functions:

1 Interpret the browser input and, when we need a business function, convert it to the COMMAREA
format expected by TRADERBL.

1 Produce responsesin HTML, including converting output returned in the COMMAREA from the
called businesslogic (TRADERBL).

This Web-aware presentation logic is best implemented in anew HTTP based presentation module, just
as TRADERPL was the 3270 based presentation module for 3270 devices. This module can either be a
specific HTTP presentation logic module, or it can be implemented in the converter routine that the
CWS can invoke. We have chosen the second option and put the new logic into our convertor which is
called TRACERCYV. The convertor isinvoked by the CWS businesslogic interface (BLI) and uses a
COMMAREA to pass data to the business functionsin TRADERBL.

To create the HTTP based presentation logic for an application such as Trader, there are two
fundamentally different CICS programming techniques:

1 The CICS WEB API used together with the DOCUMENT API

1 COMMAREA manipulation and the CWS HTML template manager
In releases of CICS TS prior to V1.3, the only choice was to use COMMAREA manipulation and the
CWS HTML template manager to manually build HTML. The new WEB and DOCUMENT APIs

supplied in CICS TS V1.3 greatly ease thistask and aso overcome the 32 KB limit on the size of HTTP
messages that could previously be passed by means of the CICS COMMAREA.

5.1.1 Basic application structure

In this section we describe how the Trader application was Web-enabled viathe facilities of CWS. The
new Web-aware presentation logic was implemented in a converter module called TRADERCV, and the
HTTP data streams manipulated using the CICS WEB and DOCUMENT API. This converter can be
used viaa CWS direct connection or the WebServer Plugin.

The flow of CICStasksin one business transaction isillustrated in Figure 27 and documented below.

1.

CWSreceivestheinitial HTTP GET for TRADERPL from the browser, with the converter
progran TRADERCYV specified in the request. A CWXN Web attach transaction is started and
handles all further HTTP requests for this business transaction, using a persistent HTTP
connection. TRADERCYV isinvoked, which builds the signon page HTML using the CICS
DOCUMENT and WEB API and sends it back to the browser.

The Web browser does an HTTP POST of the signon form. The request is passed to
TRADERCV, which calls TRADERBL passinga COMMAREA asinput. TRADERBL verifies
the userid and password, reads the company and customer files and returns the result to
TRADERCYV viathe COMMAREA. TRADERCYV returns the company selection HTML page.

The Web browser does a POST of the company selection form. TRADERCYV receives this data,
and calls TRADERBL viathe COMMAREA. TRADERBL browses the company and customer
files, builds the buy-sell quote page , and returns the quote to the browser.

The Web browser doesan HTTP POST of the completed buy-sell quote page with the number of
sharesto buy. The request is passed to TRADERCV, which calls TRADERBL passing a
COMMAREA. TRADERBL updates the share holdings in the customer file, and calculates the
value of the updated holdings. TRADERCYV sends the buy-sell quote page with the value of the
new share holdings.

The Web browser does an HTTP POST when the user clicks on the End Trader radio button.
TRADERCYV returns the Trader Complete page.

Web browser -
7 intial N ; Trader Application
| ————
| request |
AN r ..--"‘ﬁf
- v |k [r——
- . -
slgnan o
| HTMLpage | = TT—* a{(»
b A | =
 company ™, |
f PEm |

| safection | 3
, HTML page ;.'

l._.—d" "-.‘"‘ e
l'n.uy-ser.l:}uarm .‘”4

| HTML page |

L4 7

.
TRADERAL

= =t
.
-
. o) -_:,..-"—
/'f Trader ™ ‘.________,
complofe | 5 -
\HTML Nﬂ}-‘ | TRADERGY

CICS

Figure 27: Trader application flow using CWS and Web-aware presentation logic

Comparing these flows to that of the 3270 Trader application described in Chapter 3.1.1 , "Basic
application structure” on page 38, it is clear that the number of CICS tasks in one business transaction
has been reduced from ten to five. This was enabled by the removal of the dependency on the
hierarchical 3270 menu system, and the implementation of a new presentation layer.

These flows were analyzed using CICS tracing and the data sizes measured. The results are summarized
in Table 6, and will be used later in our capacity planning calculations.

Table 6: HTTP datastream sizes when using Trader viaCWS

|Step||HTTP method||Bytes received||Bytes sent|
1] oGeET | 261 | 2007 |
2| post | 453 | 1923 |
3	post	458	2406
4	posT	449	2406
5	pPost	456	1342

5.1.2 Application characteristics influencing per for mance

There are anumber of characteristics of an application that affect its cost in terms of system resources
and hence its performance. For an application using CICS Web support, the following principal factors
can be identified.

Size of datastream

For both incoming and outgoing HT TP datastreams, the CPU cost in CICS, TCP/IP, and VTAM
(eNetwork Communications Server), and the OS/390 Web server, will al increase as the size of the
HTTP message increases. Note that in more recent versions of OS/390 eNetwork Communications
Server, CPU usage for TCP/IP is alocated to both the TCP/IP and VTAM address spaces. The general
principal, asin al communications tuning, should be reduce the amount and frequency of data
transmitted, and to make sure packet sizes match throughout the network.

Outgoing HTTP messages (from CICS) containing HTML may often contain comments put in by well-
meaning HTML application programmers. These are never presented on the browser screen, but
nevertheless are transmitted across the network from the Web server to the Web browser, sometimes
constituting a significant percentage of the data. To reduce outgoing datastream size, datastreams should
be created with the minimum number of HTTP components, usualy just the HTTP level, a suitable error
code, a message, a content type, and a content length header.

Inbound datastream size can be significantly affected by different Web browsers, which will send
different amounts of HTTP header data, much of which aren't really essential. Thereislittle you asthe
application programmer can do about this, but you should be aware of the fact when testing or analyzing
your applications.

HTTP presentation logic

Within CICS, the Web-aware HTTP presentation logic can either be coded using the WEB API or by
using COMMAREA manipulation and the HTML template manager. Further details on the differencein

CPU usage between these techniques are given in Figure 31 on page 74 . ThisHTTP presentation logic
can either be implemented within the encode and decode functions of the CWS converter, or a can be
placed in a separate HTTP presentation logic module. In terms of performance, the only significant
difference between these two methods is the number of EXEC CICS LINKS required to call the
presentation logic, the converter design having the most.

Persistent HT TP connections

The usage of persistent HT TP connections from the Web browser to the Web server can givea
significant performance advantage. The support of persistent HT TP connections in CWS has aready
been discussed in "Persistent HT TP connections’ on page 56 , and the same principles apply to a Web-
aware design as when using the 3270 Web bridge. We analyzed the effect of persistent HTTP
connections in our Web-aware tests, which are detailed in later in this chapter.

State data

A typica CICS business transaction is composed of several short running CICS tasks, this applies
equally to Web based business transactions as it does to atraditional 3270 legacy application. To enable
continued processing of a business transaction, it is usually necessary to store some "state" datawithin
the CICS region. This state data can be stored within CICS temporary storage queues (TSQs) using the
facilities of the supplied CWS sample state management program (DFH$WBST). Like all CICS TSQs,
thisinformation can be stored within CICS memory or on physical DASD. Obviously, storing large
amounts of state data within CICS memory will impact the storage requirements of your CICS region,
but will also give better performance than data stored on physical DASD. To optimize performance, you
should aim to be conservative both with the amount of state data stored within CICS and the number of
CICStasks that constitute your Web business transaction.

5.2 Performance testsusing the CWS and Web-aware
presentation logic

In the following section we present our testing methods and results for a range of measurements of CPU
usage for HTTP data transfers using simple Web-aware CICS applications.

5.2.1 Test environment

The system parametersin effect during our testing are listed in A.2.3, "CICS Web support with Web-
aware presentation logic" on page 165 . These parameters are not necessarily recommended for all
environments, but were found to give good results in our circumstances. The hardware environment is
illustrated in Figure 28 , and al'so documented in A.1 , "Hardware environment" on page 161 .

ChLoad Web simulator Test 05390 imaga

-
ATM Tokanl-'-lmg
-:umulalm __,

AlX SP2 5 CPU LPAR, 9672-R55

— Wab-awarne
= CWE e application

Web

browiser
clients

CICS ragion

Figure 28: CWS test environment
We used the same series of HTTP data transfer tests, in two different environments.
1 Direct connection from the Web browser to CWS using the CICS Sockets listener.

1 Indirect connection from the Web browser to CWS, using the OS/390 Webserver and the CICS
WebServer Plugin.

The only difference between these tests was in the route of the HTTP data stream and the means by
which CICS handles the HT TP datastream, the CICS application and the Web browser workload setup
being identical.

5.2.2 Test methodology
For the CWS tests in this chapter, Web browsers were simulated using the Compuware QAL oad

product. These were run from two nodes of an AIX SP2 connected via Token Ring emulation over an
ATM network to the S/390 processor, asillustrated in Figure 28 on page 70 .

A range of five throughputs from approximately 20 to 190 Web requests per second were achieved by
varying the think time of the smulated Web browsers within the QAL oad tool. The number of Web
users was set to 200 for the CWS direct connection environment and 70 when using the CICS
WebServer Plugin. The workloads were allowed to settle before a five minute measurement interval was
sampled using OS/390 RMF.

All our tests used a Web-aware CICS application design, where the HT TP manipulation was performed
within the code of the test program. Four slightly different applications were used, two for testing
sending and receiving of dataviathe CICS WEB and DOCUMENT APIs, and two for sending and
receiving datavia COMMAREA manipulation and the HTML template manager. The sending of data
by CICS was tested using HTTP GET requests from the Web browser, and the receiving of datawas
tested using HTTP POST requests.

The principal quantifiable cost associated with Web-aware presentation logic in a CICS application will
be the cost of sending and receiving the HT TP datastream. To quantify this cost, we performed a set of

measurements to determine the CPU cost of sending and receiving different size HTTP data from a
CICS Web-aware application. We measured datastream sizes of 100 bytes, 5 KB, 15 KB, 32 KB, 33 KB
and 50 KB. However, the tests using the WebServer Plugin were limited to a maximum of 32 KB, due
to the limiting size of COMMAREASs when using the External CICS Interface (EXCI). All tests were
run with and without persistent HT TP connections to quantify the savings of doing so.

We also ran aset of 5 KB HTTP data transfer tests using an application written with the old
COMMAREA manipulation programming technique; this was done to enable a performance
comparison of the new WEB API technique and the COMMAREA manipulation technique.

5.2.3 Test results

In this section we present a summary of the performance measurements of our tests using CWS with
Web-aware applications to illustrate the important points from the data. The full set of results are
documented in B.3, "CWS with Web-aware presentation logic" on page 172 .

We have not reported transaction response times in our test results, but IBM internal measurements have
shown significant improvements in the 3270 Web bridge responsetime in CICS TS V1.3 compared
CICSTS V1.2 dueto the interna restructuring of CWS.

In Figure 29 we show the CPU usage for increasing throughputs for a5 KB send workload, using a
direct connection and the WEB API, with persistent HT TP connections. The figures plotted are the
percentage usage of a single R55 CPU, with a maximum of 500% available. Throughput is defined as
the number of Web requests per second, and measured in CICS Web-aware tasks per second.

CWS direct connection, BKB send
Throughpid va. CPU usage

W Toasl GPL

N & CiC3
0 ¢ TCRAP & VTAM

R55 CPU% usage

5 o0 L B0 B0 BDX 120 140 160 PR OO
Throughput
[ol 1o s and)

Figure 29: CPU usage of 5 KB send using CWS direct connection

In Figure 30 we plot the same results, but using the CICS WebServer Plugin. Note that the CPU usage
for the Web server includes the CPU used by the CICS WebServer Plugin as well asthe Web server
itself, since the WebServer Plugin runs within the Web server address space.

CWE WebServer Plugin, 5KB send
Throwghput vs. CPU usage
™ - = Total CPU
5D — * Wab senmr
w CICS
i” - & TCPWP & VTAM
7 "
£]
i it &
B M| "
i . 2
] -
- -
o L] i) f: a] ¥ 53 &
Thrcesghput
ofWieh requestasecond)

Figure 30: CPU usage of 5 KB byte send using CWS WebServer Plugin

From these two graphs, the following generalizations can be made which hold true across all data sizes
and connection techniques:

1 Thetotal OS/390 CPU usage is lower when using the CWS direct connection as opposed to the
CICS WebServer Plugin. Thisisto be expected, given the more complex pathlength involved
when using the WebServer Plugin as compared to a direct connection.

1 The CICS CPU usage islower per call when the WebServer Plugin is used, as opposed to a direct
connection. Thisis because the WebServer Plugin replaces a considerable proportion of the
function that otherwise occursin CICS when using adirect connection.

1 The CPU usage by eNetwork Communication Server (TCP/IP and VTAM) isasmall percentage
of the overall total CPU usage.

An additional set of tests was run using a COMMAREA manipulation style application. The purpose of
thiswas to assess if there was any significant difference in CPU cost between using the new CICS WEB
API and the old COMMAREA manipulation technique to build the HTTP datastream. The average CPU
ms per Web request over al the throughputs tested are displayed in Figure 31 , and the full set of results
can be found in Table 59 on page 180 and Table 60 on page 180 . The data plotted is the total OS/390
CPU cost and the CICS CPU cost in ms per Web request. Tests were conducted for 5 KB sends and
receives using a CWS direct connection.

WEB APl ve. COMMAREA application design
CFPU ms per Web reguest

-

]

B Othar OG/390
B Cics

- -

-

REL CPU maWek request

e L

COMMAREA wEmarm COMMAREL WED AP
SEND SEND RECERNE RECENE

Figure 31: CWS HTTP datatransfers, COMMAREA vs. WEB API application design

These results show that there are relatively minor differencesin CPU utilization between the WEB AP
and COMMAREA manipulation application techniques, but do indicate that sends are somewhat
cheaper than receives. The ease of use of the new WEB API provided in CICS TS V1.3 over the old
COMMAREA manipulation technique is likely to the be the overriding factor in deciding which
technique to use for new CICS Web-aware applications.

Next we analyzed the cost for different size data transfers using the WEB API. We averaged the total
0S/390 CPU cost per Web request for the whole range of throughputs measured and then compared
these for each data size, both for sends and receives. Theresults are illustrated in Figure 32 on page 75
for adirect connection and in Figure 33 on page 76 for the WebServer Plugin. The figures plotted are
the average total OS/390 CPU ms per Web request for the different data sizes. The actual datafor the
direct connection measurements can be found in Table 35 on page 174 to Table 60 on page 180 , and the
data for the WebServer Plugin measurementsin Table 62 on page 182 to Table 69 on page 184 . Note
that we were unable to measure the CPU usage for receives with anon-persistent HT TP connection
through the CICS WebServer Plugin due to time constraints.

CW5S direct connection, HTTP data transiers
HTTF dats size ve, CPU ma Web request

= W recotel, NoN-PONSEIent
HTTE conmection
" * npcotvo, prmsistont
13 ' HTTF conrcton
.

b pond, o -pOERSiong
HTTP conracion
sond, parssiont HTTP
connaction

R&S CPU ma'Wiob request

1 o i L]
HTTP daia slea (KB)

Figure 32: CPU usage for HTTP data transfers using CWS direct connection

The figures for the CWS direction connection and the WebServer Plugin both demonstrate good
scalability for HTTP data transfers. The main observations from these figures are as follows:

1 Thereissignificant cost associated with aminimal data transfer (the null cost), and this cost is
likely to be the dominant cost for small data transfers (less than 10 KB).

1 Thenull cost is considerably higher if using non-persistent HT TP connections as compared to
persistent HT TP connections, but the amount of additional CPU consumed per byte is about the
same.

1 Sends are significantly cheaper than receives.

1 Thefiguresfor 50 KB receives showed a slight decrease in cost per byte over the smaller data
Sizes.

CWS Web servar plugin, HTTP data transfers
HTTP data size vs. CPU ma/Wab request

¥ e, porsEtnt
» HTTP corrssction
& asnd, mof-persetent
HTTP connociion
» % spnd, persstent HTTP
A eonraciinn
™

Ass CPU meftel roquest

Figure 33: CPU usage for HTTP data transfers CWS and WebServer Plugin

Using the plotted data we were able to obtain good linear fit equations relating CPU usage per Web
request to data size; these are used later in our capacity planning estimation. It should be noted that these
costs are only the average CPU cost per request. Analysis of the data showed that the cost per Web
request tends to decrease as throughput increases, and this effect was more pronounced when using the
WebServer Plugin.

5.3 Capacity planning for a CWS Web-awar e application

In this section we use the results of our previous performance tests to create a capacity planning
methodology for estimating the CPU usage of a Web-enabled CICS application using the CWS with
new Web-aware presentation logic. We then use this methodology to estimate the CPU usage when the
Trader application is Web-enabled using the CWS with new Web-aware presentation logic.

5.3.1 Capacity planning methodology

Our Web-enabled Trader application has five CICS tasks in one business transaction. Three of these
tasks invoke the CICS Trader business logic module TRADERBL. The HTTP presentation logic is
written using the WEB API, and the size of the data streams sent and received are documented in Table
6 on page 68 . We shall assume that persistent HT TP connections are configured. Thus we can calculate
the basic costs of the application based on the original business logic costs plus the HTTP data
transmission costs.

The costs of the businesslogic in TRADERBL are already documented in Table 2 on page 45, and we
shall re-use this data, taking into account that only three calls are made to the businesslogic in our Web-
enabled trader application, as opposed to four when using the original 3270 version. We shall calculate
the HTTP data transmission costs using linear fit equations relating CPU ms per request to size of the
HTTP data stream. These were produced from the graphs in Figure 32 on page 75 and Figure 33 on page
76 . The equations are listed in Figure 34 . The R-square values for the CWS direct connection equations
were all greater than 0.99, and the R-sguare values for the WebServer Plugin equations were all greater
than 0.98. Note that since the figures for 50 KB receives showed a small decrease in cost per byte over
the smaller data sizes, they were excluded from the linear fits.

When using a CW S direct connection:

send, persistent HT TP connection

Total OS/ 390 CPU ns per Wb request 4.52 + (0.078 * data KB)

send, non-persistent HT TP connection

Total OS/ 390 CPU ns per Wb request 6.65 + (0.093 * data KB)

receive, persistent HTTP connection

Total OS/ 390 CPU ns per Web request

5.11 + (0.289 * data KB)

receive, non-persistent HT TP connection

Total OS/ 390 CPU ns per Wb request 7.13 + (0.301 * data KB)

When using CWS and the CICS WebServer Plugin:
send, persistent HT TP connection

Total OS/ 390 CPU ns per Web request 11.7 + (0.206 * data KB)

send, non-persistent HT TP connection

Total OS/ 390 CPU nms per Web request = 13.9 + (0.189 * data KB)

receive, persistent HT TP connection

Total OS/ 390 CPU ns per Wb request

10.2 + (0.492 * data KB)

Figure 34: Equations for CPU usage per Web request based on HTTP data size
5.3.2 Capacity planning estimate

The costs for one Web-enabled Trader business transaction consists of five separate Web requests or
CICStasksasshownin Table 7 .

Table 7: Breakdown of costsin CWS Web-enabled Trader

CICS task	HT TP method		Data received (bytes)		Data sent (bytes)
1		cerT	261	2007	
2		post	453	1923	
3	post	458 I 2406			
4	post	449 I 2406			
5	post	456 I 1342			

5.3.2.1 CWSdirection connection estimation

To estimate the CPU usage at each step when using a direct connection, we use the linear equations
given in Figure 34 on page 77 , relating throughput to the size of the HT TP datastream. To this we add
the known cost of the businesslogic for Trader as given in Table 2 on page 45 .

For the first CICStask in the Trader business transaction, we use the cost for a non-persistent HTTP
connection, since the HTTP connection must first be established. For the next four CICS tasksin the
business transaction, we use the cost for persistent HT TP connections. At each step thereis arelatively
small amount of data sent to CICS from the Web browser. We do not factor thisinto our estimates, as
doing so proved to be of small consequence. Similarly, we do not take into account that in the test
measurements, there is a small amount of data sent for the receive tests, and a small amount of data
received for the send tests. The calculation of the CPU usage at each step isillustrated in Table 8 .

Table 8: CPU usage per Web request with CWS and direct connection

Step Linear equation Datasent ||CWS(CPU| TRADERBL (CPU | Total (CPU
(bytes) ms) ms) ms)
1 |[Total CPU ms=6.65+ (0.093 2007 6.8 0 6.9
* data KB)
2 ||Total CPU ms=4.52 + (0.078 1923 4.7 4.1 8.7
* data KB)
3 ||Total CPU ms=4.52 + (0.078 2406 4.7 4.1 8.8
* data KB)
4 ||Tota CPU ms=4.52 + (0.078 2406 4.7 4.8 9.5
* data KB)
5 ||Total CPU ms=4.52 + (0.078 1342 4.6 0 4.6
* data KB)
[Totals| | | 255 | 13.0 | 385 |

We can now calculate the CPU usage required to run the Web-enabled Trader at a throughput of 10
business transactions per second (or 50 Web requests per second) as follows:

CPU Usagefor Trader

Total CPU ms=38.5* 10 =385 CPU ms

Of thistotal 385 CPU ms, we can calculate how much should be allocated to the different OS/390
components. We do this by first deducting the known cost of 171 msfor the businesslogic in
TRADERBL, and then calculating the percentage breakdown for the individual components. We do this
by using the relative proportions reported for each component in our 5 KB test measurements with
persistent HTTP connections, as found in Table 36 on page 174 . The throughput of 39.57 transactions
per second was used, asit is the closest to our defined rate of 50 Web requests per second (or 10

business transactions per second). This calculation isillustrated in Table 9.

Table 9. CPU percentage breakdown for CWS direction connection

Component Per centage of total per CPU usagefor 10 businesstransactions (CPU
component ms)
TRADERBL 130
CICSother		77.3%	197
TCPIP& VTAM		13.4%	34
0S/390 other		9.3%	24
Total		385	

5.3.2.2 WebServer Plugin estimation

To estimate the CPU consumption at each step when using the CICS WebServer Plugin we will use a
similar methodology to that used previously in 5.3.2.1 , "CWS direction connection estimation” on page
78, but instead use the appropriate linear equations for the CICS WebServer Plugin from Figure 34 on
page 77 . Thiscalculation isillustrated in Table 10 .

Table 10: CPU usage per Web request with CWS WebServer Plugin

Step Linear equation DataSENT || CWSCPU | TRADERBL CPU ||Total
(bytes) ms ms
1 || Total CPU ms=139 + (0.189 * 2007 14.3 0 12.0
data KB)
2 || Tota CPUmMs=11.7 + (0.206 * 1923 12.1 4.1 13.9
data KB)
3 || Total CPU ms=11.7 + (0.206 * 2406 12.2 4.1 14.0
data KB)
4 || Tota CPUms=11.7+ (0.206 * 2406 12.2 4.8 14.7
data KB)
5 || Total CPU ms=11.7 + (0.206 * 1342 12.0 0 9.7
data KB)
[Total | | 628 | 13.0 | 75.8]

Since each Trader business transaction comprises five Web requests, we can calcul ate the CPU usage to
run the Web-enabled Trader at athroughput of 10 business transactions per second (or 50 Web requests
per second) as follows:

Total CPU ms=75.8* 10 = 758CPU ms

CPU Usagefor Trader

Of thistotal 758 CPU ms, we can calculate how much should be allocated to the different OS/390
components. We do this by first deducting the known cost of 171 msfor the businesslogicin
TRADERBL, and then calculating the percentage breakdown for the individual components. We
calculate the breakdown for the individual components by using the relative proportions reported for

each component in our 5 KB test measurements with persistent HT TP connections, as found in Table 63

on page 182 . The throughput of 56.49 transactions per second was used from these figures, asit isthe
closest to our defined rate of 50 Web requests per second (or 10 business transactions per second). This

cadculationisillustrated in Table 11 .

Table 11. CPU percentage breakdown for CWS WebServer Plugin

Component Per centage of total per CPU usage for 10 businesstransactions (CPU
component ms)
I
TRADERBL 130
CICSother		23% I 144	
TCPIIP& VTAM		6% I 38	
Webserver		64%	402
_Os/390 other	7%	44	
Total		758	

5.3.3 Confirming our estimate

In order to quantify our capacity planning estimate, we measured the CPU usage of the Trader
application using adirect CWS connection with new Web-aware presentation logic, implemented in the

CWS converter.

We determined from CICS monitoring data that one single business transaction using persistent HTTP
connections consumed, on average, 58 CPU ms within the CICS address space. Our estimation

documented in Table 9 on page 80 shows a usage of 130 + 197 = 327 CPU ms per 10 business
transactions that is allocated to CICS, which equates to 33 CPU ms per individual business transaction.
At a higher throughput the actual cost per transaction will decrease, thus reducing this difference. Even
S0, our measured value of 59 CPU msis still 26 CPU ms higher than our estimate of 33 CPU ms.

On investigation, the reason for this difference is thought to be because of the design of the new Web-
aware presentation logic program TRADERCV. TRADERCYV does significantly more than ssimply
replace the BMS RECEIVE MAP and SEND MAP in Trader, with WEB RECEIVE and WEB SEND

cdls.

Within TRADERCYV there are anumber of callsto the CICS-supplied state management program
(DFH$WBST) to keep application state data across related Web browser requests based on atoken
passed between the Web browser and CICS. This state management program stores this state data using
the facilities of CICS Temporary Storage Queues (TSQ). The presentation logic in the converter,
TRADERCV, aso makes extensive use of the CICS DOCUMENT API to build HTML pages before
they are sent using the WEB API commands. Neither the state management program nor the

DOCUMENT API are heavy CPU users, but when their cost is added to a simple transaction, it appears
to have a significant effect which is not factored into the results of our simple estimate based on data
transmission costs alone.

5.4 Trader performance comparison

Using our capacity planning estimates for a CWS direct connection in Table 9 on page 80, and for the
CICS WebServer Pluginin Table 11 on page 81 , we have compared the CPU usage of the Trader
application running as a Web-aware application to the original costs of the 3270 version. Thisis
illustrated in Figure 35 . The figures plotted are CPU ms on an 9672-R55, for running 10 invocations of
the Trader business transaction.

Note that 10 Trader business transactions equate to 50 Web requests or CICS tasks when using CICS
Web support, and 100 CICS tasks when using the 3270 green screens.

1270 Trader ve. CWS Trader with Web-oware prosentation koglo
TP usage breakdorem

O cther

RE5 CPL ma
0 Trashes Dy ara Sons

Figure 35: Capacity planning estimates for Trader via CWS

It should be borne in mind when comparing these figures that the costs are based on the average cost of
transferring HTTP data over the range of throughputs measured. This cost will decrease as throughput
increases, thus reducing the overall CPU usage at higher throughputs; this effect appears to be more
pronounced when using the WebServer Plugin than when using a direct connection to CICS Web
support.

The estimate also does not include the costs of any HT TP presentation logic apart from the basic cost of
building and transmitting the HT TP data stream. In our test to verify our estimation (5.3.3,
"Confirming our estimate”" on page 81), we found that the presentation logic costsin our CICS Web-
aware version of the Trader application were significantly more than our estimated cost based on
transmission of the HTTP data stream.

Chapter 6: SSL with CWS

Overview

In this chapter we summarize how to provide Web access to the business logic of the Trader application,
using CICS Web support (CWS) together with new Web-aware CICS presentation logic. We then

present a set of performance studies for various laboratory workloads, and go on to use these figuresto
perform capacity planning for Web-enablement of the Trader application.

In this chapter we first give a brief overview of the Secure Sockets Layer (SSL) protocol and what the
implications are of using it to secure your CICS Web application. We then present |aboratory
performance figures for using SSL with CICS Web support (CWS) to access CICS applications, both
viaadirect connection and using the CICS WebServer Plugin. We then go on to use these figures to
perform capacity planning for Web-enablement of the Trader application.

Sources of further information on SSL and CICS Web security are:

Chapter 5 ,"TCP/IP Security Overview" of the TCP/IP Tutorial and Technical Overview , GG24-3376
(redbook)

Chapter 6, "CWS Security" of the CICS Transaction Server for OS390 Version 1 Release 3: Web
Support and 3270 Bridge , SG24-5480 (redbook)

6.1 SSL overview

Since the Internet is so popular and easy to access, it immediately raises security concerns when used as
the infrastructure for any sort of electronic communication. A recent U.K. newspaper article stated the
findings of the Credit Card research group as follows: "Consumers who pay for goods over the Net are
20 times more likely to fraud than if they pay at atill or over the telephone”. (Guardian Weekly,
September 16, Volume 161, No. 12)

It is generally wiseto consider the Internet as a non-secure network, implying that data sent could be
read by any person, and that the Web site you are accessing is only that which it claimsto beif you have
good reason to believe so. The SSL security protocol was designed to address both of these issues.

SSL isasecurity protocol that was developed by Netscape Communications Corporation, along with
RSA Data Security, Inc. SSL provides an addition to the standard TCP/IP socket API that has security
implemented within it. Hence, in theory, it is possible to run any TCP/IP application in a secure way
without changing the application. In practice, SSL isonly widely implemented for HTTP connections as
the HTTPS protocol.

The SSL protocol is composed of two layers, the SSL Handshake Protocol and the SSL Record
Protocol. The SSL Handshake Protocol provides a protocol for initial authentication of the server and
optionally the client, and for the exchange of secret encryption keys to be used by the Record Protocol.
The SSL Record Protocol sits below the TCP/IP sockets protocol and provides a means for transferring
datausing avariety of predefined cipher and authentication combinations.

An HTTPS connection is the protocol used for transmitting HT TP datastreams over SSL connections. A
HTTPS connection isinitiated by the client Web browser using a special URL that commences https :
instead of http: . Thiswill establish a secure connection between the Web browser and Web server via
SSL. The following chain of events occurs during this process and isillustrated in Figure 36 . Note that
thisisahighly simplified version of SSL. In reality, it contains numerous other details that counter
different types of attack.

1. Theclient sends a connection request with a client hello message, the content of which includes:
i SSL version number

i A random number
i List of cryptographic options supported by the client (cipher suites)

2. The server evaluates the parameters sent by the client hello message and replies with its own
server hello message. Thisincludes the following information:

i Server X.509 certificate containing the server's public key
i SSL version number

i SessionID

i Cipher to be used

i Optional request for aclient certificate

3. Theclient authenticates the server certificate and returns a message containing a random number
called the pre-master secret key, which is encrypted using the server's public key. If requested, a
client certificate with a certificate verify message is also sent.

4. The server decrypts the clients message containing the pre-master secret key using the server's
private key. The server switches to the cipher specification selected by the client and authenticates
the client certificate if requested. The server replies with a finished message.

5. Both client and server generate a master key using a hashing process involving the pre-master

secret key and random numbers exchanged previously. Thisisthen used to generate secret session
keys for the subsequent secret key data encryption.

CLIENT S5ERYER
1)
WA
client hello | = | o
(_\
- — samrvar holo
sarver camiicate
3
|J|*l|ﬂah|ﬂr KHCTIF‘.k#'.‘ _.—'\.__.' Lo
-
@)
— == linighed
PSR Y, -
Encryplad
dala
iransiar

Figure 36: SSL handshake process

The SSL protocol combines the benefits of public/private key (asymmetric) cryptography with those of
secret key (symmetric) cryptography. The SSL handshake phase uses public/private key cryptography to
authenticate the server (and optionally the client) and to distribute a shared secret key. This secret key is

then used for the encryption of all subsequent transmitted data, and offers the benefit of being much less
CPU intensive than public/private key cryptography.

The encryption of datawill always have a performance impact; however, using SSL on $/390, this can
be minimized in several ways:

1 Usage of the S/390 Cryptographic Coprocessor Feature

The Cryptographic Coprocessor Feature can be used to reduce the CPU costs of SSL data
transmission when using the DES or triple DES ciphers, and SSL handshaking when using the
RSA PKCS#1cipher. In order to use this hardware feature, the OS/390 Integrated Cryptographic
Service Facility (ICSF) hasto be installed and operational. |CSF provides a cryptographic
application programming interface.

1 SSL session ID re-use

An SSL session can be resumed when a client makes anew HT TP connection; thisis achieved by
passing a previous session ID to the server for re-use. Thisistermed "session ID re-use”, and the
handshake involved is termed a null handshake, as opposed to the full handshake usually incurred.
The processing costs of a null handshake are considerably less than those of a full handshake,
since the session ID does not have to be re-generated.

1 Choice of cipher suites

SSL offers achoice of different ciphers, and these will have different CPU requirements. Also,
most ciphers offer different levels of security by using different length keys. Key length may
affect CPU usage of the cipher.

1 The use of persistent HT TP connections

Use of a persistent HTTP connection, whereby a subsequent HT TP connection re-uses a
previously opened persistent TCP/IP socket connection, ensures that after the initial SSL
handshake, no other handshake is performed until the persistent HT TP connection is broken,
which will usualy only occur when the HTTP connection is timed out by the server.

The different types of SSL handshakes can be defined as "full”, "null”, or "none", and will occur when
usng HTTP asfollows:

1. A full handshake will be performed when the client initially establishes the HTTPS connection,
since thereisno session ID in the client hello message. A full handshake will also be performed
when the server decides a submitted session ID is not valid for re-use.

2. A null handshake will be performed when the client establishes an HTTPS connection and
includes asession | D for the session to be resumed, and the server decidesit isvalid for re-use.

3. No handshake will be performed when anew HTTPS request is received from a Web browser via
apreviousy established persistent HT TP connection.

A schematic logic diagram of which SSL handshake is used in which set of circumstancesis shownin
Figure 37 .

Mo
T hardshaks
Faed :
A
o] L
o -
i ST "
o | 1T
*. Ha | heandshake

Figure 37: Types of SSL handshakes

For further information on the SSL protocol with examples of SSL handshaking, go to
http://devel oper.netscape.com/tech/security/index.html . To read about client authentication, go to
http://home.netscape.com/eng/ssl3 .

In OS/390 V2.7 the SSL protocol was made available as an externalized and integral component of the
operating system. CICS TS V1.3 can utilize this support to implement HT TPS connections when
establishing a direct connection from the Web browser to the CICS Sockets listener in CICS Web
support. The CICS Transaction Gateway (CTG) for OS/390, and the WebSphere application server for
0S/390, also utilize OS/390 SSL support. This allows your Web browser clients to communicate
securely over the Internet with your target CICS region using either the CICS Web support, CTG
applets, or CTG servlets.

6.2 Performancetestsusing SSL with CWS

In this section, we first present measurements for various types of SSL handshakes, and then we present
measurements for encrypted data transmission via CWS SSL support. We investigate the results of using
different strength server keys, and we show the cost of using selected ciphers for data encryption, as
well as the advantages of using the S/390 Cryptographic Coprocessor Feature for SSL handshaking and
SSL data transmission.

6.2.1 Test environment

The test environment was equipped with sufficient hardware (processor, memory, DASD, network
bandwidth) to eliminate any constraints. The operating system was OS/390 V2.7, together with CICS
Transaction Server V1.3, IBM HTTP Server V5.1, and several PTFsrelating to SSL support. Full details
of the software levels and parameters in effect during testing are listed in A.2.4 , "CWSwith SSL" on
page 166 . The test system hardware configuration was the same as that used in Chapter 5, "CWS with
Web-aware presentation logic" on page 65 and illustrated in Figure 28 on page 70 . Additionaly, the
S/390 Cryptographic Coprocessor Feature was enabled; this consists of dua cryptographic module chips
protected by tamper-detection circuitry and a cryptographic battery unit. These coprocessors were
dedicated to performing encryption operations for SSL.

6.2.2 Test methodology

For the CWS SSL testsin this chapter, Web browsers were simulated using the Compuware QAL oad

http://developer.netscape.com/tech/security/index.html
http://home.netscape.com/eng/ssl3

product. These were run from two nodes of an AIX SP2 connected via Token Ring emulation over an
ATM network to the S/390 processor, asillustrated in Figure 28 on page 70 .

A set of tests were run using a CWS direct connection and using the CICS WebServer Plugin. A range
of five throughputs from approximately 15 to 60 Web requests per second were achieved by varying the
think time of the ssmulated Web browsers within the QAL oad tool. The number of Web users was set to
70in al cases. The workload was allowed to settle before a five minute measurement interval was
sampled using OS/390 RMF.

Thetest CICS application was a simple Web-aware CICS program, written in assembler. It used the
WEB and DOCUMENT APIsto send a variable number of bytes as specified by the client. All requests
used HTTP GETsto invoke the CICS program.
For the SSL handshake measurements, an HTTP GET request was used to request that the CICS
program just return 1 byte of data. The use of persistent HT TP connections and SSL session IDswas
controlled to test the following SSL handshakes.

1 Full handshake using a 1024 bit server key

1 Full handshake using a 512 bit server key

1 Full handshake using a 1024 bit server key and the S/390 Cryptographic Coprocessor Feature
enabled

1 Full handshake with client certificates using a 1024 bit server key

1 Full handshake with client certificates using a 1024 bit server key and the /390 Cryptographic
Coprocessor Feature enabled

1 Null handshake using a 1024 bit server key
1 Null handshake using a 512 bit server key

The server key length refersto the size of the public/private key pair used by the server. The size of the
server key is specified in the server certificate.

For the SSL data transmission measurements, the same test program was used as in the SSL handshake
tests, except the amount of data returned was modified. All the data transmission measurements utilized
persistent HT TP connections such that no SSL handshaking was performed for the period of
measurement. The CPU usage of workloads transmitting 1 byte, 8 KB and 16 KB were measured using
the following ciphers

1 RC4-MDS5 (40 bit and 128 bit)

1 Triple DES

1 Triple DES together with S/390 Cryptographic Coprocessor Feature enabled

All the tests with the S/390 Cryptographic Coprocessor Feature and with SSL client certificates were
only carried out using a CWS direct connection. The OS/390 Web server does support usage of SSL

client certificates and the Cryptographic Coprocessor Feature, but we did not have time available to test
these configurations.

6.2.3 Test results

In this section we present a graphical summary of the SSL performance measurements, in order to
highlight the important points and to provide the necessary information to perform our capacity planning
estimate. A more detailed performance comparison of the different CICS Web technologies can be
foundin 8.2, "Analysis of results' on page 132 .

SSL handshake results

In Figure 38 we show the total OS/390 CPU% usage for our SSL handshake tests, when using the CWS
direct connection. The figures plotted are the percentage usage of a single R55 CPU, with a maximum of
500% available. Unprocessed results for the measurements can be found in Table 76 on page 187
through Table 82 on page 189, in section B.4.1 , "SSL handshakes with a CWS direction connection”
on page 187 . The figures marked " with crypto " were measured with the Cryptographic Coprocessor
Feature enabled.

S5L handshakes - CWS direct conneclion
Throughput v total CPU usage
500
= B Figfl hanckshaion
E A0 {1024 key)
T * Ful handshaks
I {51 2:E8t ooy
1_-'_ g -t - & Full handshakn
= with crypio
T 20 = ¥ Hull handshake
2 = o & hon 55L
i "
o0 * F
- &
i
li] o i 40 i} B
Theroighisi
Wb repumete/ meconed]

Figure 38: SSL handshakes — CWS direct connection

All handshakes utilized HT TP non-persistent connections; the non-SS.. handshake is the cost of
establishing a non-persistent HT TP connection without SSL. The null handshake costs were found to be
the same if using a512 or 1024 bit server key, and similarly, the full handshake costs with the
Cryptographic Coprocessor Feature enabled were found to be the same when using a 512 or a 1024 bit
server key; in both cases, only the results for the 1024 hit server key are plotted.

In Figure 39 we show the total OS/390 CPU% usage for our SSL client certificate tests with a CWS
direct connection. The figures plotted are the percentage usage of a single R55 CPU, with a maximum of
500% available. All the tests with client certificates used a 1024 bit server certificate. Unprocessed
measurements can be found in Table 83 on page 189 and Table 84 on page 189 , in section B.4.2 , "SSL
data transmission with a CWS direction connection” on page 190 .

550 handshakes with client certificates
CWES direct connsction
Throughput wa. CPU usags

530 - B Gt} cortidicales
+ Clign] porificaies
]] with cryple
@ o S50

5% usago of single ASS CPU

Llu] 20 30 &0 80 (=]

Throughput
TWal Pagus s/ Setond]

Figure 39: SSL handshakes, client certificates

Figure 39 illustrates the high CPU cost of client authentication, but also shows how the Cryptographic
Coprocessor Feature greatly reduces this cost. Usage of the Cryptographic Coprocessor Feature reduced
the CPU cost for client authentication to about the same cost as a full handshake with a 1024 bit key
using the /390 Cryptographic Coprocessor Feature, as shown in Figure 38 on page 92 .

We did not measure SSL client certificates or usage of the Cryptographic Coprocessor Feature with the
0S/390 Web server and the CICS WebServer Plugin. These features are supported in this configuration,
but we did not have the time available to test them.

In Figure 40 we show the total OS/390 CPU% usage for our SSL handshake workloads, using CWS
with the CICS WebServer Plugin. The figures plotted are the percentage usage of a single R55 CPU,
with a maximum of 500% available. Unprocessed measurements can be found in Table 100 on page 195
through Table 103 on page 196, in section B.4.3 , "SSL handshakes with the CICS WebServer Plugin”
on page 195 . Note that the Cryptographic Coprocessor Feature was not enabled in these measurements.

[S3L handshakes - CICS WebSarver Plugin

Throughput vi. lotal CPU usage

I
=

B Full handshaios
[1024-0el wary]
* Full hncdshacs
(512 bt hosy)
& Ml handshalo
L ® Mon S5L
.

8 8 &

%% usage of angh ASS CPUY
]

Figure 40: SSL handshakes — WebServer Plugin

Figure 40 shows the same pattern as observed in our previous tests, that using the CICS WebServer
Plugin uses somewhat more CPU than using a direct connection to CWS. This difference in CPU usage
when using the CICS WebServer Plugin isdiscussed in 5.2.3, "Test results’ on page 72.

The results for our SSL handshake tests illustrate several important points:

1 The Cryptographic Coprocessor Feature reduces the CPU cost of the full handshakes with 1024
and 512 bit keysto the same level, which is around 210% of the cost of establishing a non-SSL
connection.

1 The Cryptographic Coprocessor Feature also reduces the CPU cost of the 1024 bit full handshake
with client certificates to the same level as without client authentication.

1 When the Cryptographic Coprocessor Feature is not used, the smaller 512 bit server key reduces
the CPU cost of the full handshake by about three fold.

1 Thenull form of the handshake reduces the CPU cost of the SSL handshake to around 140% of
the cost of establishing anon-SSL connection.

SSL data transmission results

In Figure 41 we show the total OS/390 CPU% usage for the different SSL data transmission ciphers at a
range of throughputs for both the CWS direct connection and the CICS WebServer Plugin. 8 KB of data
were sent from a Web-aware program using the WEB API. The actual data for these measurements can
be found in Table 88 on page 191 through Table 99 on page 194, and Table 104 on page 197 through
Table 106 on page 197, in section B.4 , "CWS with SSL" on page 186. The figures marked triple DES +
crypto used the Cryptographic Coprocessor Feature; this can be used with either a CWS direct
connection or the CICS WebServer Plugin.

Theillustrated test results for the RC4-MD5 cipher are simplified because the results were found to be
the same if using a 40 bit (international) or a 128 bit (US domestic) key. Thisis because they both pass a
16 byte key length into the encryption algorithm. The difference is that 40 bit encryption uses

"salted" (unencrypted random data) as part the of key-block used to generate the 16 byte key. This
reduces the strength of the encryption, not the path length.

CWS 551 data transmission costs (BKE)
Throughpid va, total CPU sage
- L] B Dot Cornponon
i 1060 -t triphs ES
= = WebiBerver Plugin,
| - R0
- & * Direct connootion
m .] Iigha DES « oyl
M " [Nrect COrmaction
- R " RiC4-8ADE
Er\. 40 L] Deresct Comsnad i
] L o e
] p v non SEL
] X
]
10 20 33 Lt
Throughpist
Wy PR

Figure 41: CPU usage for 8 KB SSL data transmissions
The graph highlights the following points:

1 The Cryptographic Coprocessor Feature provides a reduction of CPU usage for SSL data
transmission of about 50% when using the triple DES cipher.

1 The RC4-MD?5 cipher (40 or 128 bit) uses less CPU for data transmission than the triple DES
cipher.

1 The CPU cost of SSL datatransmission is significantly less expensive than the cost of SSL
handshaking, as reported in our "SSL handshake results’ on page 92.

6.3 Capacity planning for SSL with CWS

In this section we will now perform an estimation of the OS/390 CPU usage for the Trader application
when Web-enabled viathe CWS, using a CWS direct connection and Web-aware presentation logic
secured with the CWS SSL support.

SSL CPU estimation

The datain this chapter should only be used in conjunction with CICS Web support and CICSTSV1.3;
it should not be used to estimate CPU usage for any other IBM products which may use different
implementations of SSL.

6.3.1 Capacity planning methodology

We have aready estimated the CPU costs for Web-enabling the Trader application using CWS and a
direct connection to a Web-aware program; this can be found in section 5.3.2.1 , "CWS direction
connection estimation” on page 78 . To estimate the CPU usage of the same scenario but with SSL, we
need to calculate the delta cost for the SSL handshakes and the delta for SSL data encryption.

We will assume that persistent HT TP connections are being used in our application. Thus each Trader
business transaction will incur one full SSL handshake on the first HT TP request in the business
transaction, and the subsequent encryption cost of data sent from CICS to the Web browser.

Note that thisisasimplistic model, and it is possible that an application such as Trader could incur
greater or indeed lesser costs. The circumstances where CPU costs could be less are as follows:

1 The persistent HTTP connection does not expire across the lifetime of severa business
transactions.

If the persistent HT TP connection time-out value does not expire (defined in the SOCKETCLOSE
parameter of the CICS TCPIPSERVICE definition), then a subsequent HTTPS request from a
previously attached Web browser will not incur any SSL handshake costs).

1 The persistent HTTP connection is broken, but the SSL session ID time-out value has not expired.
If the SSL time-out value (specified inthe CICS SIT as SSLDELAY) has not expired when a
request for a subsequent HTTPS connection from a previously attached Web browser is received,
then a null handshake will be performed, as opposed to a full handshake.

The circumstances where CPU costs could be greater are as follows:

1 More Web browser clients are connected to one CICS region than can be supported by the number

of CICSSSL TCBs.

Once the number of attached SSL clients exceeds the number of defined SSL TCBsin one CICS
region, then subsequent HTTP requests will "steal” the least previously used SSL TCB. Since
there is a one-to-one affinity between an HTTPS session and an individual SSL S8 TCB, then
TCB stealing will cause Web browsers that send a subsequent HTTPS request to CICS to incur
the additional cost of an SSL null handshake and the creation of anew HTTP connection. It is
possible to spread larger numbers of Web browsers across multiple CICS "Web Owning" regions
by using TCP/IP port sharing or TCP/IP dynamic DNS to workload-balance HTTP or HTTPS
requests across multiple CICS regions. When using CWS and the WebServer Plugin, the"TCB
stealing” situation does not occur, due to the different internal design of the OS/390 Web server
SSL support.

1 Client certificates are used.

If SSL client certificates are used, then further CPU costs may be incurred, both within the SSL
routines in the server (CICS) and on the Web client. As shown in our tests, the costs of SSL
handshaking can be minimized using the S/390 Cryptographic Coprocessor Feature.

1 A large amount of datais received as well as sent.

Trader receives only avery small amount of data, and the encryption cost of the HTTP headersis
already included in our SSL data encryption measurements. However, for applications that receive
large amounts of data, this cost should be factored into the capacity planning estimate.

However, we will assume none of these conditions apply to Trader, and that there are sufficient CICS
SSL TCBsto support persistent HT TP connections from all attached Web browsers.

SSL handshake delta

To calculate the CPU delta of the SSL full handshake with a 1024 bit server key using hardware
cryptography, we shall calculate the average CPU cost per request for this handshake and subtract this
from the average CPU cost for establishing anon-SSL, non-persistent HTTP connection. This
calculationisillustrated in Table 12 . The averages were calculated from the CPU ms/request figuresin
Table 76 on page 187 and Table 79 on page 188 .

Table 12: SSL handshake delta

Non-SSL (CPU|| SSL full handshake || Deltaper SSL full handshake
ms) (CPU ms) (CPU ms)

Average CPU ms per 9.7 224 12.7
request

SSL datatransmission delta

Similarly we can calculate the delta SSL cost for the data transmission. We shall calculate the average
CPU cost per request for the 8 KB data transmission and subtract from this the average CPU cost per
request for anon-SSL data transmission. This calculation isillustrated in Table 13 . The averages were
calculated from the datain Table 86 on page 190 and Table 89 on page 191 .

Table 13; SSL data transmission delta

Non-SSL data RC4-MD5data ||Deltafor RC4-M D5 8 KB|| Delta per
transmission (CPU || transmission (CPU || datatransmission (CPU || KB (CPU
ms) ms) ms) ms)
Average CPU 8.5 10.6 21 0.3
ms per
request

6.3.2 Capacity planning estimate

In this section we will now perform an estimation of the total OS/390 CPU usage for the Trader
application when Web-enabled via CWS, and a direct connection using CICS SSL support. See Table
14 . We will assume minimal SSL costs are incurred as follows:

1 CWSdirect connection.

1 SSL handshake: 1024-bit server key utilizing the OS/390 Cryptographic Coprocessor.

1 SSL datatransmission: RC4-MD5 cipher with a40 or 128 bit key.

1 No TCB stealing occurs within the CICS region.

1 A persistent HTTP connection is used for the duration of the business transaction.

The data sizes used in the trader application are already documented in Chapter 6, "SSL with CWS" on
page 85, along with the estimated CPU Usage for Trader at athroughput of 10 business transactions per
second. We will re-use this data and add to it the cost of afull SSL handshake on the first request as

givenin Table 12 , and the subsequent SSL encryption costs from Table 13 .

Table 14: CPU usage per Web request with SSL and a CWS direct connection

Step||Data SENT || CWS Handshake | Datatransmission || TRADERBL Total
(bytes) |[(CPU ms) (CPU ms) (CPU ms) (CPU ms) (CPU ms)
1	2007	69	12.7	0.6	0	202	
2	1923	46	0	0.6	4.1	93	
3	2406	47	0	0.6	4.1	94	
4		2406	47	0	0.6	48	101
5 1342	46	0 I 04 I 0 L_50					
[Total | 255 | 12.7 | 2.8 | 13.0 | 540 |

Since each Trader business transaction comprises five Web requests, we can use this figure of 54 CPU
ms to calculate the CPU cost of running the Web-enabled trader application at a throughput of 10
business transactions per second (or 50 Web requests per second) as follows:

CPU cost of Trader with SSL

Total CPU ns = 54 * 10 = 540 CPU ns

Looking at the SSL cost for the same 10 business transactions, we can now calculate:

CPU cost of SSL for Trader

SSL CPUns = (12.7 ns8 + 2.8 n) * 10 = 155 n®s

of this 155 ms

SSL handshake% = 127/ 155 = 82%
SSL data transm ssion% 28/ 155 = 18%

If we now deduct the known cost of 130 CPU msfor the CICS business logic in TRADERBL from this
540 CPU msto give 410 CPU ms, we can estimate how much should be allocated to the different
0S/390 components. We do this by using the relative proportions reported for each component in our
CWS 8 KB SSL data transmission figures given in Table 89 on page 191 , using the throughput of
60.57, which is the closest to our defined rate of 50 Web requests per second. This calculation is
illustrated below in Table 15 .

Table 15: CPU percentage breakdown for CWS direct connection with SSL

Component Per centage of total per CPU usage for 10 businesstransactions (CPU
component ms)
CICS 130 ms

TRADERBL
CICSother		74% I 303 ms	
TCPIP& VTAM		10%	41 ms
0S/390 other		16%	66 ms
Total		540 ms	

6.4 Trader performance comparison

Using the figuresin Table 15, we have compared the cost of the CWS Web-enabled Trader application
with the cost of the SSL version; thisisillustrated in Figure 42 . We assume the use of a 1024-bit server
key utilizing the OS/390 Cryptographic Coprocessor, the RC4-MD5 cipher. The figures plotted are the
total CPU ms used on an 9672-R55, for running 10 Trader business transactions (which equates to 50
Web requests or CICS tasks).

CWS Trader ve. CWS Trader with S5L
CPLU usage beeakdown

B 05580 ofer
1 TCFIP & WTAM
B CiCS ctber

Tl
o B | = oGS e

ERiit e gn

280 -+ :

CWE without S8L CW5 with 351

sSSP ms

10 Trager Disiness 1

Figure 42: Capacity planning estimates for Trader via CWS with SSL

The graph illustrates the cost of enabling SSL security with CWS using a direct connection. The largest
proportion of this cost isincurred in the CICS address space; thus there is aresulting increase in the
"CICS other" CPU usage. Note that the SSL costs represented are minimal SSL costs, and you should
refer to 6.3.1 , "Capacity planning methodology" on page 96 for further information on how the SSL
costs could be different for your particular environment. It would also be possible to use SSL security if
using the CICS WebServer Plugin. We do not present data for this configuration, but in this case, the
additional CPU cost would be incurred in the Web server address space.

Chapter 7: TheOS/390 CTG

Overview

In this chapter we first discuss how to Web-enable the Trader application using the OS/390 CICS
Transaction Gateway (CTG). We then present the results of our performance studies of CTG applets and
servlets using simple test applications. We use the results of these performance tests to build a capacity
planning methodology for estimating the CPU usage when using the OS/390 CTG. Lastly we calculate
the CPU usage of the Trader application if it were to be Web-enabled using the OS/390 CTG.

CTG V31l

Version 3.1 of the CTG has implemented significant performance enhancements over version 3.03 of the
CTG and its predecessor the CICS Java Gateway v2. However, because of this, if the OS/390 CTG V3.1
isused with CICS Transaction Server V1.2, it requires the fix for APAR PQ31270 to be applied to
CICS. Thisdoes not apply if using CICS Transaction Server V1.3

7.1 Converting the Trader application

In this section we discuss the Trader application and how to convert it from alegacy 3270 application to
amodern Java-based application using the CTG. Refer to Chapter 3, "The 3270 green screen Trader

application” on page 37 for more details on the Trader application. This task is eased because the
original Trader application has separate business and presentation logic. The CICS businesslogic in the
progran TRADERBL can be invoked directly using the CTG Externa Call Interface (ECI) Java
methods.

The CTG provides the ability for Java client programs to access CICS in three different architectures;
applets, servlets, or stand-alone Java applications. We will discuss the applet and the servlet options, as
there is no specific architecture for Java applications. Refer to 1.3, "CICS Transaction Gateway" on
page 14 for a description of the applet architecture and the servlet architecture.

7.1.1 Basic application structure

We now give abrief overview of how the application structure would look if the Trader application was
Web-enabled, using Java applets and Java servlets.

Using the applet architecture

If aJava applet architecture was used to Web-enable the Trader application, the presentation logic would
be implemented within the Java applet, from which ECI calls would be made to the business logic
within CICS. The flow of requestsin one Trader business transaction isillustrated in Figure 43 and
explained below.

1. AnHTTPrequest is sent from the Web browser to the Web server for an HTML page containing a
tag for the CTG Java applet.

2. The Web server returnsthe HTML page with the embedded appl et tag.
3. The browser requests download of the specified applet.

The applet isinvoked within the VM of the Web browser and now runs the rest of the application; this
would be asfollows:

4. The applet opens a network connection to the CTG Java gateway application on OS/390 using the
JavaGateway.open() method.

5. The applet buildsan HTML page, and the user enters his userid and password into the presented
display. The applet constructs an ECI request with a COMMAREA of 372 bytes containing the
userid and the password. Then the applet, using the JavaGateway.flow() method, calls the
TRADERBL program in CICS passing the COMMAREA. The ECI request is flowed to the CTG
Java gateway application, which passesit on to CICS using the External CICS Interface (EXCI)
protocol. The CICS business logic program TRADERBL returns the company list in the
COMMAREA, which is passed back to the applet by the CTG.

6. The applet constructs an ECI request with a COMMAREA of 372 bytes containing the company
selection. Then the applet, using the JavaGateway.flow() method, calls the TRADERBL program
in CICS passing the COMMAREA. TRADERBL returns the quote in the COMMAREA.

7. The applet constructs an ECI request with a COMMAREA of 372 bytes containing the number of
sharesto buy. Then the applet, using the JavaGateway.flow() method, calls TRADERBL passing
this COMMAREA. TRADERBL returns the number of shares bought in the COMMAREA. The

applet then updates the quote and displaysit.

8. The applet closes the connection to the CTG Java gateway application using the
JavaGateway.close() method.

Web browser

IS
== %
!nnlnl \\\
u}—t w\
ECI \‘2 '3
I oo .
| Lo

1567 NN
o580 | |II \\ e -_xi
' v

CTG
Java gateway application

Walb server

|
l EXCI

YyY
TRADERBL
CICS Region

Figure 43: Trader application flow using the CTG applet architecture

It isimportant to note that the number of calls to the CICS business logic per Trader business transaction
is now three, and thus the number of CICS tasks per business transaction is aso three.

Using the servlet architecture
If aJava servlet architecture was used to Web-enable the Trader application, the presentation logic
would be part of the servlet or a Java Server Page (JSP), while the business |ogic remains unchanged

inside the CICS application. A servlet is controlled by and runs within the VM of the servlet engine
such as WebSphere Application Server.

The basic structure of the Trader application Web-enabled using a servlet architectureisillustrated in
Figure 44 , and the flows would then be as follows:

1. AnHTTPrequest is sent from the Web browser to the Web server for the relevant servlet.
2. The Web server invokes the servlet.

The servlet isnow in control and runs the rest of the application. We assume the servlet was loaded at

the start-up of the Web server, and also that the local connection to the CTG was established at that
time. Further processing in case of the Trader application would be as follows:

3. Theservlet buildsan HTML page for the signon display and sends this to the Web browser.

4. A userid and password is entered on the HTML page and the Web browser sends thisto the
servlet. The serviet uses the CTG ECI methods to build an ECI request. Then the servlet, using the
JavaGateway.flow() method, calls the CICS program TRADERBL, passinga COMMAREA.
TRADERBL returns the company list in the COMMAREA, and the servlet formats the company
list display and sendsthe HTML to the Web browser.

5. A company is selected. The servlet reads the company selection, and uses the CTG Java methods
to build an ECI request with a COMMAREA containing the company selection. Then the servlet,
using the JavaGateway.flow() method, calls TRADERBL, passing this COMMAREA.
TRADERBL returns the quote in the COMMAREA, and the servlet formats the quote display and
sends the HTML to the Web browser.

6. Theoption for buy sharesis entered. The servlet reads the buy share option, and builds a
COMMAREA containing the number of sharesto buy. Then using the JavaGateway.flow()
method, the servlet calls TRADERBL, passing the COMMAREA. TRADERBL returns the
number of shares bought in the COMMAREA to the servlet; the servlet then buildsan HTML
page and sends this to the Web browser.

DS/380

e T

057390
Y Web server
tat WebSphers
- L Application

JYM Server

THADERBL

CICS Region

Figure 44: Trader application flow using the servlet architecture

It isimportant to note that the number of calls per business transaction to the CICS business logic is now

only three, and that the number of Web requests per business transaction is now four.
7.1.2 Performance consider ations

We will now describe the major issues which are likely to affect the performance of CTG applet and
servlet designs.

7.1.2.1 Using the applet ar chitecture

When using the applet architecture, all the new Java presentation logic will be executed in the Web
browser. The following characteristics should be considered:

Client CPU usage

The performance of the Java Virtual Machine (JVM) on the Web browser will affect the performance of
the applet solution, since the new presentation logic isimplemented within the VM on the client
machine's Web browser. Thiswill not impact the server CPU usage and will not be considered in our
studies.

CTG thread usage

The CTG Java gateway application, which is used for the applet architecture, isitself a sophisticated
multi-threaded Java application. It can handle multiple requests simultaneously and has a set of
properties (configured in the CTG.INI file), to allow requests to be queued and timed-out if necessary.
Within thisfile two pools of threads are can be configured, the ConnectionManager threads and the
worker threads. For each connected applet client, one ConnectionManager thread is used in the Java
gateway application, and is held until the client issues a disconnect using the JavaGateway.close()
method. In order for an ECI call to be performed via an allocated ConnectionManager thread, a thread
must be allocated from the worker thread pool for the duration of the ECI request. Thisrelationship is
summarized in Figure 45 .

Thus the ConnectionManager threads limit the maximum number of connected Java applets, while the
worker threads limit the number of concurrent ECI calls that can be issued by these attached clients. The
initial and maximum numbers of these ConnectionManager and worker threads are set in the CTG.INI
file. Requests can be timed out if a ConnectionManager or worker thread does not become available
within a specified time, or if the gateway detects that aclient isidle or is not responding. Further details
are given within commentsin the CTG.INI file.

Java Applet CICS Transaction Gateway

Conngclion
Managers Workers
LT
JenaGaeweng opani)
S !
handshaka
= e
JnaaCmeaiey o)
ECI1 o
ECI
wanl T
ECI raply
= .‘
Neatwark

Figure 45: CTG threading model
Network I/O

The bandwidth of the network is of primary importance, and the network protocol used to connect from
the Web browser to the CTG can also be an important factor influencing overall performance and
scalability of the solution. If this network runs over a public network such as the Internet, then you may
not be able to control the bandwidth or availability of this network. The performance of the network will
be affected by:

1 The size of the applet downloaded from the Web server
1 The size of the data passed in an applet ECI COMMAREA
1 The number of ECI requests made per business transaction

The CICS COMMAREA is passed across the network from the applet viathe CTG Java gateway
application to the CICS server and back. Y ou should always try to design your application so it has the
minimum number of data flows from the Web client through to the CICS server. It is also possible both
to truncate or compress the data flowed through the network from the applet to the CTG Java gateway
application; further details are discussed in 8.2.5, "CICS Transaction Gateway" on page 140 .

7.1.2.2 Using the servlet architecture

When using the servlet architecture, the new Java presentation logic will be executed in the OS/390 Web
server address space. The following characteristics should be considered.

Server processing

The servlet architecture places more workload on the §/390 running the Web server as compared to the
applet architecture, because the presentation logic runs within the servlet. Thus the performance of the
0S/390 VM and the OS/390 Web server are key ingredients in the performance of the servlet
architecture. For hints and tipsin this context, refer to the IBM WebSphere Troubleshooter for OS390,
which you can find at: http://www.s390.ibm.com/nc/wsphere.html

http://www.s390.ibm.com/nc/wsphere.html

Java design

The design of the Javalogic in your servlet will be a key factor in the overall performance of a servlet
solution, since the presentation logic isimplemented within the serviet. One of the key factorsin the
performance of your Java presentation logic islikely to be the cost of manipulating datastreams. Thusin
your Java logic you should reduce the amount of parsing of the CICS COMMAREA. Also, all our
performance used the basic Java classes provided by the CTG. If you decide to use the Common
Connector Framework (CCF) CICS classes as provided by Visual Age for Java, you should quantify any
additional costs involved since the CCF classes use a higher level of abstraction than the CTG basic Java
classes.

CTG connection re-use

The connection from the servlet to the CTG is created by using the open() method of the JavaGateway
constructor. When designing a servlet this should usually be a"local™ connection to give the best
performance. The CTG local protocol signifies that the CTG will use the Java Native Interface(JNI) to
invoke proceduresin the local EXCI shared library provided by CICS.

Since servlets run within multiple threads of the servliet VM engine, a servlet design is multi-threaded.
These multiple threads can re-use the CTG connection created by the open() method of the JavaGateway
constructor. For best performance you should ensure that this connection is initialized just once in the
servlets init() method, and then re-used during the life of the serviet. A good example of how to
implement a multi-threaded servlet with the CICS Transaction Gateway is described in the CICS
Support Pack CA89 at http://www.software.ibm.com/ts/cics/txppacs , and further details are given in the
redbook Revealed! Architecting Web Accessto CICS, SG24-5466.

GUI design

If you want to build acomplex HTML GUI for your Web users, then you should consider that, in this
case, the servlet architecture may cause alarge increase in network traffic. Thisis because every HTML
page is built by the servlet and has to be sent from the Web server to the Web browser in every
interaction.

Network 1/0

When using the servlet architecture there are two different network transmissions. one between the Web
browser and the servlet, and the other between the Web server and CICS. The flow from the Web
browser to the servlet is across a network and should be reduced as much as possible. The flow from the
servlet to CICS will be cross memory or cross coupling facility, and so is of less concern.

However, you can use this design to your advantage by implementing some new business logic in the
servlet which can make multiple calls to CICS before building the HTML presentation output. This
would enable you to reduce the flows from the Web browser to the Web server, and may make the
servlet architecture attractive as an Internet solution. Note that the CTG setCommareaOutboundL ength()
method is not designed for servlet usage, since this only affects the data stream from the Java application
to the CTG.

7.2 Performancetestsusing CTG Java applets

In the following section we show the results of our performance tests of Java applets and the OS/390

http://www.software.ibm.com/ts/cics/txppacs

CTG. You should be aware that the test scenarios and applications used were smplified in order to
guantify the configuration under analysis; the application tested was not areal life application such as
Trader.

7.2.1 Test environment

The test environment was equipped with sufficient hardware (processor, memory, DASD, network
bandwidth) to eliminate any constraints. The operating system was OS/390 V2.7. We used the CICS
Transaction Gateway for OS/390 V3.1, together with CICS TS V1.3, JDK V1.1.8, WebSphere
Application Server V1.1, and the OS/390 IBM HTTP Server V5.1. Thetest environment isillustrated
Figure 46 and full details of the software levels and parametersin effect arelisted in A.2.5, "CICS
Transaction Gateway" on page 168 .

TPNS Web simulator
O5/380 image Test 05380 image

B channel to 3
channal connection

5 CPULPAR, 9672-R55 5 CPU LPAR, 9672-R55

Web | |
browser 1 - CTG ICICS application
clignis

) — CICS roglon

Figure 46: CTG applet test environment

7.2.2 Test methodology

The applet workloads were emulated using TPNS; this was achieved by capturing the network flows of a
sample CTG Java applet and then replaying them at different throughputs. The TPNS driver was
running on a separate 9672-R55 processor within the sysplex so as not to interfere with the test 0S/390
image.

The think time was set to different values, and the workload allowed to settle before a five minute
measurement interval was sampled using the OS/390 RMF feature. This process was repeated for
different think times to obtain figures for five throughput rates from approximately 30 up to 100 Web
requests per second. All our applet tests used 500 simulated Web browser clients.

Our applet tests used asimple CICS COMMAREA based application. This application was a minimal
application that merely modified and returned the COMMAREA sent by the client. Note that the
complete COMMAREA was transmitted from the applets, through the CTG Java gateway application,
into CICS, and back again. Y ou may be able to significantly reduce network 1/0 by using methods to
truncate the COMMAREA, refer to "Applet datatransmission” on page 140 for further details.

The CTG supports four network protocols for connectivity from an applet to the CTG Java gateway
application, TCP/IP sockets, HTTP, and secure versions of these, namely SSL and HTTPS. We used

only the TCP/IP and HTTP protocols in our tests, and you should quantify the additional costs of using
SSL or HTTPS if you have a need to use these. Note that our tests with SSL in Chapter 6 , "SSL with
CWS' on page 85 only apply to CICS Web support.

We ran awider range of tests using the TCP/IP protocol and analyzed the effect of the following
variables:

1 The cost of opening the network connection from the applet to the CTG Java gateway application
1 Re-using the connection from the applet to the CTG across multiple ECI calls

1 Increasing the COMMAREA sizein ECI requests from 100 bytesto 16KB

1 Workload balancing using multiple CTG Java gateway applications

Note that our applet measurements do not include any CPU usage when downloading the applet from
the Web server to the Web browser.

7.2.3 Test results

In this section we present a graphical summary of the performance measurements, in order to highlight
the important points and to provide the necessary information to perform a capacity planning estimate of
an application such as Trader. Comparison of the results of the different Web technol ogies can be found
in 8.2, "Anaysisof results’ on page 132 .

First of all, we analyzed the cost of ECI calls using different network protocols from the applet to the
CTG Java gateway application.

Using the CTG HTTP protocol

For this situation, we measured the CPU cost of sending data using the HTTP protocol. The results are
shown in Figure 47 . The figures plotted are the percentage usage of a single R55 CPU, with a maximum
of 500% available. The size of the COMMAREA for these measurements was 100 bytes and the
connection from the applet to the CTG Java gateway application was not re-used, that is, the cost of each
ECI call includes the cost of opening and closing the HTTP connection from the applet to the CTG Java
gateway application. Refer to Table 115 on page 202 for the detailed set of measurement data.

CTG applets, HTTP connection
Thedughpait va, total CPU usage
5
= Toanl CPU
L] * CTG
0 « CICS
n " TCPIP & VTAM

% usapa of Singid RLE CPU
=

Figure 47: CPU usage of CTG applets, with an HTTP connection

These figures show that the majority of the CPU cost isincurred in the CTG address space, and that the
cost within CICSisand TCP/IP isminimal.

Using the CTG TCP/IP protocol

In Figure 48 we show a set of measurements illustrating the CPU% usage on an R55 for an ECI
workload, when using the TCP/IP protocol from the applet to the CTG Java gateway application. The
figures plotted are the percentage usage of a single R55 CPU, with a maximum of 500% available. The
size of the COMMAREA for these measurements was 100 bytes, and the connection from the applet to
the CTG Java gateway application was not re-used. Refer to Table 107 on page 198 for the detailed
measurement data.

CTG applets, TCP/P connection
Thitaghpu! va. talal CPU segs
® Total GPU
+ CTG
0 - CIES

o . TCRAP & WTAM

gl RSS CPU
[

% usago ol

g &8

] 1§ 0 M0 40 B OB T M 80 m
Trrcughpul
FECH requeatssscond)

Figure 48: CPU usage of CTG applets, with a TCP/Ip connection

Comparing these measurements with the TCP/IP protocol to those with the CTG HTTP protocol in
Figure 47 on page 114 , it is can be seen that when using the TCP/IP protocol, approximately 2.8 times
less CPU per call isused, and that this reduction is found principaly in the CTG address space.

Cost of making the applet TCP/IP connection

A set of measurements was conducted to understand the CPU usage when opening and closing the
TCP/IP connection from the client applet to the CTG Java gateway application. This event istriggered

in the CTG applet code using the JavaGateway.open() and JavaGateway.close() methods. Measurements
were compared for ECI requests that did and did not re-use the TCP/IP connection from the applet to the
CTG Javagateway application. The total OS/390 CPU% usage for these measurementsisillustrated in
Figure 49 . The figures plotted are the percentage usage of a single R55 CPU, with a maximum of 500%
available. Refer to Table 108 on page 199, Table 107 on page 198 and Table 115 on page 202 for the
detailed measurement data.

CTG applets, TCPAP connection re-use
Thegughput ve, tatsl CPU usage

] 0 CONNGCHON he-usi
28— ® 0TRSO M-ubd

S5 widesn of singlo RSS CPLI

Figure 49: CPU usage of CTG applets making TCP/IP connection

This graph shows the efficiency of re-using the CTG applet connection when making multiple ECI calls
from the applet to CICS. Using these figures we are able to calculate the CPU cost of opening and
closing a CTG applet TCP/IP connection. To do this we calculated the average CPU cost per ECI
request for the workload that re-used the connection, and subtracted this from the average CPU cost per
ECI request for the workload that did not re-use the connection. This gave us afigure of 10 CPU msto
open and close a CTG applet TCP/IP connection, which we will use later in our capacity planning
methodology.

Increasing COMMAREA size, and the TCP/IP protocol

The principal quantifiable factor affecting CPU usage after having made the connection from the appl et
to the CTG Java gateway application will be the amount of data transmitted in the COMMAREA when
making an ECI call. We measured CPU costs for COMMAREA sizes varying from 100 bytes to 16KB
bytesin our tests. In Table 16 we have calculated the average cost over our different throughputs for
each ECI COMMAREA size; thisdatais plotted in Figure 50 . The actual measurements for these
results can be found in Table 108 on page 199 through Table 113 on page 200 . All these measurements

were conducted with one CTG Java gateway application and 500 clients, and re-used the CTG TCP/IP
connection.

Table 16: CPU cost per ECI call with increasing COMMAREA sizes

[ECI COMMAREA (bytes)||Average total CPU per ECI call|
100	12.4ms
1,000	14.3 ms
2,000	18.0 ms
4,000	19.6ms
8,000	21.8ms
16,000	27.4ms

ECI COMMAREA slze va. CPU cosl
CTG applets

8| ¥ Tobal CPU ma per EC call

RSS wiak 05280 CPU ma
=

-]]] 8 10 {H] L
ECI COMMAREA size (KB)

Figure 50: CPU cost of varying CTG applet ECI COMMAREAS
Multiple CTG address spaces and the TCP/IP protocol

In Figure 51 we show a set of measurements conducted using multiple CTG Java gateway application
address spaces. Refer to Table 114 on page 201 for the detailed measurement data. In this scenario we
spread the workload across four CTG address spaces using the OS/390 eNetwork Communications
Server TCP/IP port sharing feature. This allows multiple address spaces to listen on the same port
number, thus providing for inbound I P requests to be workload balanced across these address spaces.
This has the affect on the CTG of reducing the number of threads used per address space. The figures
plotted are the percentage usage by all four CTG address spaces of a single R55 CPU, with a maximum
of 500% available. The COMMAREA size used was again 100 bytes, and the TCP/IP connection was
re-used.

CTG applets via multiple CTG gateway procosses
Threughput va. CPU usags

g

= Tolal CPU

* CTa

& CICS
TOPAR & WTAM

|
]

“a usage ol sngie ASS CPU
2

@ 1o 203 s 400 500

Thoughpa
ECI sequestn'second)

Figure 51: CPU usage of CTG applets using multiple CTG address spaces

By comparing the measurementsin Figure 51 for multiple CTG address spaces to those with just one
address space (Figure 48 on page 115), it can be seen that using multiple address spaces greatly
increases the scalability of the CTG. Thisis dueto the fact that reducing the number of threads per
address space reduces the CPU cost per ECI call and thusincreases the overall efficiency of the CTG,
allowing higher throughputs to be reached.

7.3 Capacity planning for CTG Java applets

In this section we use the results of our previous performance tests to create a capacity planning
methodology for estimating the CPU usage of a Web-enabled CICS application using the OS/390 CTG
applets. We then use this methodol ogy to estimate the CPU usage when the Trader application is Web-
enabled using CTG applets.

7.3.1 Capacity planning methodol ogy

Asillustrated in Figure 43 on page 105 , our Web-enabled applet design for Trader has an initial call to
open the connection from the applet to the CTG Java gateway application, followed by three ECI callsto
the TRADERBL CICS application, using a COMMAREA size of 372 bytes— thus giving a throughput
of 30 CICS tasks per second for our defined 10 business transactions per second.

The presentation logic will be implemented in the Java applet on the Web browser client, and as such is
not included as part of our capacity planning estimation.Thus the total OS/390 CPU costs per business
transaction running the Java applet Web-enabled Trader will be:

1. Cost of one request to open and close the applet CTG TCP/IP connection

2. Cost of three 372-byte COMMAREA ECI calls which re-use the TCP/IP connection

3. Costin CICS of the requests to the businesslogic in TRADERBL

The cost of opening and closing a TCP/IP connection from a Java applet to the CTG are already known
from the datain Figure 49 on page 116 as 10 CPU ms per request.

The CPU cost for transmitting a given amount of datain an ECI COMMAREA can be calculated from
the datain Figure 50 on page 117 , by extrapolating from the two closest measured COMMAREA sizes.
We did not plot alinear fit equation for this data, since it can be seen that the costs do not increasein a
linear fashion.

The CPU cost of invoking the business logic in TRADERBL are already documented in Table 2 on page
45 . This cost will be 13 CPU ms per business transaction, since when using our CTG applet
architecture, only three calls are made to the CICS business logic

7.3.2 Capacity planning estimate

Using our capacity planning methodology we can estimate the OS/390 CPU usage when Web-enabling
the Trader application viathe applet architecture:

1. Cost to open/close the applet CTG TCP/IP connection:
10 CPU ms per request
2. Cost of three 372 byte COMMAREA ECI cdlls:
3* (12.4 + (((372-100)/(1000-100)) * (14.3-12.4))) = 39 CPU ms

3. Costin CICS of TRADERBL:

13 CPU ms

CPU = total CPU consumed in OS390 R55 LPAR Throughput is the number of ECI or Web
requests per second

Thusthetotal is10 + 39 + 13 = 62 CPU ms per business transaction, for running Trader using aCTG
applet architecture on an R55 processor. Hence we can calculate the cost of running Trader at our
designated throughput of 10 business transactions per second to be 62 * 10 = 620 CPU ms.

Of thistotal 620 CPU msfor running Trader using CTG Java applets, we can estimate how much should
be allocated to the different OS/390 components. We do this by first deducting the known cost of 130
ms for the business logic in TRADERBL, and then using the relative proportions reported for each
component in our test results. We used our results from the 1000 byte TCP/IP test found in Table 109 on
page 199 . A throughput of 30.37 Web requests per second was chosen, asit is the closest to our defined
rate of 10 business transactions per second (or 30 CICS tasks per second). Thisisillustrated in Table
17.

Table 17: CPU percentage breakdown for CTG applet Trader

Component Per centage of total per CPU usagefor 10 businesstransactions
component (CPU ms)
CICSTRADERBL		-	130 ms
CICS other	9.7%	48 ms	
TCPIP& VTAM		3.9%	19 ms
CTipJ;‘{ agaanay 64.8% 317 ms			
0S/390 other	21.6%	106 ms	
Total		620 ms	

7.4 Performancetestsusing CTG Java servlets

In the following section we show the results of our performance tests of Java servlets and the OS/390
CTG. You should be aware that the test scenarios and applications used were simplified in order to
guantify the configuration under analysis; the application tested was not areal life application such as
Trader.

7.4.1 Test environment

The test environment was equipped with sufficient hardware (processor, memory, DASD, network
bandwidth) to eliminate any constraints. The operating system was OS/390 V2.7. We used the CICS
Transaction Gateway for OS/390 V3.1, together with CICS TS V1.3, JDK V1.1.8, WebSphere
Application Server V1.1, and the OS/390 IBM HTTP Server v5.1. The test environment isillustrated in
Figure 52 on page 121 , and full details of the software levels and parametersin effect arelisted in
Appendix A "Test environments' on page 161 .

TPNS Web simulalor
05/350 image Test O5/390 image
channel to B
channal connaction
5 CPU LPAR, 9672-R55 5 CPULPAR, 0672-R55
M CICS
Web Web et
browser .{ Sphera _._E.I:PIEE.“ET. 1
clignts CICS reglon
7, N

Figure 52: CTG servlet test environment.

7.4.2 Test methodology

The Web browser workloads were emulated using TPNS, this was achieved by capturing the network
flows of asample CTG Web browser client and then replaying them at different throughputs. The TPNS
driver was running on a separate 9672-R55 processor within the sysplex so as not to interfere with the
0S/390 test image.

A range of five throughputs from approximately 30 to 100 Web requests per second were achieved by
varying the think time of the smulated Web browsers within TPNS. The number of Web users was set
100 for the servlet tests. The workload allowed to settle before a five minute measurement interval was
sampled using OS/390 RMF.

The application running in the CICS region was a minimal application, that is, the application received a
short COMMAREA (of 39 bytes), changed the last byte, and returned it. The reason for choosing such a
minimal application and small COMMAREA size, was that we wanted to show the amount of CPU
usage for invoking a CICS application from the Java servlet environment.

We ran tests to determine the costs of the following quantifiable components when using CTG Java
servlets:

1 Creation of the HTTP connection

1 Basic servlet cost

1 Cost of an ECI call from within the servlet
Our servlet tests used a very simple Java servlet that sent back aminimal HTML reply to the HTTP
GET method used to invoke the servlet. We did not use Java server Pages (JSP), Visua Age Java(VAJ),

or the Common Connector Framework(CCF) in the development of our servlet, and if you do so you
should quantify any such additional costsincurred.

7.4.3 Test results

In this section we present a graphical summary of the performance measurements, in order to highlight
the important points and to provide the necessary information to perform a capacity planning estimation
of an application such as Trader.

0S/390 servlet JVM performance

Y ou should be aware that new versions of the Web-enablement connectors (OS/390 Java Devel opment
Kit, WebSphere Application Server, and CTG) are constantly being developed by IBM, each release of
which has historically shown significantly improved performance. The numbers presented here for
0S/390 CTG Java servlets are merely a snapshot in time, with expectation for continued improvements
in future releases. Refer to http://www.s390.ibm.com/java for the latest details.

Servlet using the ECI

First we analyzed the cost of CTG ECI callsto asimple CICS application from a servlet. Thisis
illustrated in Figure 53 on page 123 , detailed data for these measurements are shown in Table 121 on
page 204 . The figures plotted are the percentage usage of a single R55 CPU, with a maximum of 500%
available. The Web clients used persistent HT TP connections to communicate with the OS/390 Web
server. This graph shows good scalability at the workloads measured, and you can see that the mgjority
of the CPU used isincurred in the Web server address space, since thisis the process that serves the
HTML pages and runs the VM and the CTG Java methods.

CTG serviat, EC1 workioad
Treoirghput ve. CPU ussge
m W Tolsl CPL
+ Wob saner
" & QI
“ TOHIP & VTAM

Ssutage of snge RES CPU

Threughput
[T er—

Figure 53: CPU usage of CTG servlets
Servlet with no ECI call

Next we analyzed the cost of the same servlet but without the ECI call to CICS, in order to determine
the delta cost within the servlet of invoking the EXCI to pass the COMMAREA to CICS. The resulting
total CPU usage along with the CPU usage when invoking CICS isillustrated in Figure 54 ; the raw data
for these measurements can be found in Table 121 on page 204 and Table 123 on page 205 . The figures
plotted are the percentage usage of a single R55 CPU, with a maximum of 500% available. The Web
clients used persistent HT TP connections to communicate with the OS/390 Web server.

http://www.s390.ibm.com/java

ECI cost in a CTG serviet
Throughput vs. total CPU usage

= sarvial with ECI
* sorvint without ECI

% usage o singis ASS CPY
L]

Figure 54: CPU usage of servlets with and without the CTG

The graph shows that there is a significant cost associated with calling CICS from a servlet. Thisis 24%
of the cost of our test servlet or, on average, 8 CPU ms per Web request. This cost is unlikely to increase
significantly asthe COMMAREA size increases, since the CTG uses the EXCI protocol to pass data to
the CICS region. The EXCI utilizes the CICS MRO protocol to pass datato CICS, either via cross
memory communication if the CTG and CICS region are within the same CEC, or viaan $390 coupling

facility if the CICSregionisin adifferent CEC in the Parallel Sysplex. Both of these communication
mechanisms should have minimal costs.

Persistent HTTP connections

Next we analyzed the cost of the non-ECI servlet but measured the increase when persistent HTTP
connections were not used, in order to determine the saving of using persistent HT TP connections over
non-persistent HT TP connections. The resulting total CPU usage isillustrated in Figure 55 ; the figures
plotted are the percentage usage of a single R55 CPU, with a maximum of 500% available. The raw data
for these measurements can be found in Table 123 on page 205 and Table 124 on page 205 .

Serviets and persistent HTTP connections
T ws. tolal CPU usage

& Mon-parsisiont
= - HTTF conmdctions
f} 18+ . " Pargiglen] HTTP
E o oonnachons
_i .

§wm
B
F .
T
Q0
a3 A0 L5 &)

Throughpit
O ol st S]

Figure 55: CPU usage of servlets with persistent HT TP connections

The graph shows that there is a saving associated with use of persistent HT TP connections of, on
average, 10% of the cost of invoking the servlet, or 2.7 CPU ms per call. We will usethisfigurelater in
our capacity planning estimation. The data also suggests that at higher throughputs the usage of
persistent HT TP connections provides better scalability, since there is a marked increase in CPU usage

for the last data point with non-persistent HT TP connections.

7.5 Capacity planning for CTG Java servlets

In this section we use the results of our previous performance tests to create a capacity planning
methodology for estimating the CPU usage of a Web-enabled CICS application using servlets with the
0S/390 CTG. We then use this methodol ogy to estimate the CPU usage when the Trader application is
Web-enabled using CTG servlets.

7.5.1 Capacity planning methodology

Asillustrated in Figure 44 on page 107 , our Web-enabled servlet design for Trader has oneinitial call to
the servlet to build the signon page, and then three calls to the servlet which invoke the businesslogic in
the TRADERBL application — thus giving a throughput of 40 Web requests per second, and 30 CICS
task per second, for our defined 10 business transactions per second.

The CPU costs of invoking the business logic in TRADERBL are already documented in Table 2 on
page 45 . This cost will be 13 CPU ms per business transaction, since only 3 calls are made to the CICS
business logic. The presentation logic will be implemented in the Java servlet, but the cost of thisis not
included as part of our capacity planning estimation, as the costs are indeterminate. These costs should
be quantified and factored into any servlet capacity planning estimation.

Thus the total 0S/390 CPU costs per second for running the Web-enabled Trader application at a
throughput of 10 business transaction per second are:

1. Cost of initial request to invoke a servlet with no ECI call using a non-persistent HTTP
connection.

2. Cost of three requests which invoke the ECI using persistent HT TP connections.
3. Costin CICS of the requests to the businesslogic in TRADERBL.

We can calculate the cost of the first call using the average of the CPU ms/request from our datain
Table 124 on page 205 (Serviets, non-persistent HTTP connection, no ECI) . Thisis 27 CPU ms.

The cost of the next three requests which invoke the ECI can be calculated using the average of the CPU
ms/request from our datain Table 121 on page 204 (Serviets, persistent HTTP connection, ECI) . Thisis
32 CPU ms per request.

The CPU costs of invoking the business logic in TRADERBL are already documented in Table 2 on
page 45 . This cost will be 13 CPU ms per business transaction, since when using our CTG servlet
architecture only three calls are made to the CICS business logic.

7.5.2 Capacity planning estimate

Using our capacity planning methodology we can estimate the OS/390 CPU usage for one Trader
business transaction. We will use athroughput of 40 Web requests per second, since thisisthe
throughput we wish to achieve.

1. Cost of initial request to invoke a servlet with no ECI call using a non-persistent HTTP

connection:

27 CPU ms

2. Cost of three requests which invoke the ECI using persistent HT TP connections:

32* 3=96 CPU ms

3. Costin CICS of the requests to the businesslogic in TRADERBL.:

13 CPU ms

Thusthetotal is27 + 96 + 13 = 136 CPU ms, for one Trader business transaction, and hence we can
calculate the cost of running Trader at our designated throughput of 10 business transactions per second
to be 136 * 10 = 1360 CPU ms.

Of thistotal 1360 ms, we can estimate how much should be alocated to the different 0S/390
components. We do this by first deducting the known cost of 130 msfor the businesslogic in
TRADERBL, and then using the relative proportions reported for each component in our test results. We
used our results for serviets, persistent HTTP connection, ECI found in Table 121 on page 204 . A
throughput of 47.37 Web requests per second was chosen, asit is the closest to our defined rate of 10
business transactions per second (or 40 Web requests per second). This calculation isillustrated in Table

18.
Table 18: CPU percentage breakdown for CTG servlet Trader

Component Per centage of total per CPU usage for 10 businesstransactions (CPU

component ms)

TRADERBL 130
CICSother		4.6% I 57	
Webserver		78.5%	966
TCPIP& VTAM		1.5%	18
0S/390 other		15.4%	189
Total		1360	

7.6 Trader performance comparison

Using the figuresin Table 17 on page 120 and Table 18 on page 128 , we have compared the cost of
Web-enabling the Trader application using a CTG Java applet architecture and a CTG Java servlet
architecture. Thisisillustrated in Figure 56 .

The figures plotted are CPU ms on an 9672-R55, for running 10 invocations of the Trader business
transaction. Thus 10 Trader business transactions equate to 30 Web requests or CICS tasks when using
applets, 40 Web requests but only 30 CICS tasks when using servlets, and 100 CICS tasks when using
3270 green screens.

3270 Trader vs. CTG 'Web enabled Trader
CTG CPLU usage breakdown

B 050350 cifve
TCPIP & WTAM

| i
Wiab parvar

B CicS ahe

W G5 buisiness
e

R=S TR ma

10 Traded bosingss iransactons

Figure 56: CPU usage comparison for Trader viaCTG

It should be borne in mind when comparing these figures that the Java servlet architectureis
fundamentally different from the applet architecture because the presentation logic is implemented
within the Java servlet which runs on OS/390.

The CTG applets figures assume usage of the CTG TCP/IP protocol and re-use of the TCP/IP
connection as discussed in "Cost of making the applet TCP/IP connection” on page 116 . We aso do not
factor in any savings that workload balancing would give when using multiple CTG Java gateway
application address spaces, as found in "Multiple CTG address spaces and the TCP/IP protocol” on page
118.

Chapter 8. Conclusions and recommendations

Overview

The objective of this redbook is to help you understand the performance impact of Web-enabling your
CICS-based applications, and to provide the necessary information to perform capacity planning
estimation. The redbook Revealed! Architecting Web Accessto CICS, SG24-5466 explains the choices
available to you and helps you decide which is the best solution to choose. There are many factors
influencing this choice, but having considered which technical solution to adopt, it isimportant to ensure
that this solution delivers both the function and the performance you require.

In the previous chapters we have presented data from our test studies that demonstrate the CPU cost of
the different Web-enabling methods, and we have illustrated how to apply this datato atypical legacy
CICS COBOL application. In addition to the estimation processes, each chapter includes a general
discussion of the important factors affecting the performance of each solution and provides some
guidelines that will help you if you implement that particular solution.

In this chapter we will summarize the conclusions from our performance study and provide some

recommendations to improve the performance of your Web-enabled CICS application.

In Chapter 9, "CICS Web capacity planning example' on page 153 we will go on to use our capacity
planning methodologiesto tell afictional story of how the "Trader company" Web-enabled its legacy
CICS application.

8.1 Interpreting the performance data

Although the studies presented in this book have been designed to give generaly applicable results, they
may not be a good representation of your application. Any capacity planning estimate you use, whatever
the source, should always be verified on atest system before the application is put into production. If
your test system does not perform as well as you expected, check whether you have followed the
recommendations available. Try to understand which components are not working as well asyou
anticipated. Y ou may be able to use the data presented to determine that one particular component is
using excessive system resources. Don't just put your application into production, expecting it to fix
itself!

8.2 Analysis of results

A comparison of our capacity planning estimates for the CPU costs of Web-enabling our Trader
workload are shown in Figure 57 . The figures plotted are the total CPU ms used on an 9672-R55, for
running 10 Trader business transactions.

Comparision of CPU cosis for Web-anabling Trader
1800
e | B 05300 all other
B CICS sotm

:

= 50

S0t Tor 10 Dusiepes PRS0
Fib CPU s

k) Tm oM GV One o1 (e} TG
Vidsbricign dregt WhbSmar S5 ppoles sonvcts
rradion PLgn

Figure 57: Capacity planning estimates to Web-enable the Trader application

When comparing the results of our capacity planning estimates the following points should be
considered.

1 Inour test to confirm our capacity planning estimate for a CWS directs connection we found that
our estimate was too low; refer t0 5.3.3, "Confirming our estimate”" on page 81 for further details.

1 Inour CWS SSL capacity planning estimate we use minimal costs for SSL. There are many
different combination possible when using SSL ; refer to 6.3.1 , "Capacity planning methodology™
on page 96 for more details.

1 Our CTG servlets capacity planning estimate is based on a simple serviet with only minimal

presentation logic. Additional presentation logic such as the use of JSPswill need to be factored
into your capacity planning estimates; refer to 7.4.2 , "Test methodology™ on page 122 for more
details.

1 These figures are a snapshot taken at the time of this study. IBM is constantly striving to improve
the performance of its Web-enablement and Java technology; refer to
http://www.s390.ibm.com/java for more details.

All of the methods of CICS Web-enablement detailed in this book demonstrate the functionality and
scalabilty of these OS/390-based solutions. Thisis shown by the general linear nature of the results
shown. These studies have been performed with simple applications that have been designed to be
generally applicable. As we have shown with our Trader application analysis, these results can be
applied to give approximate costs for Web-enablement, but these estimations should used in conjunction
with measurements of your own applications in atest environment.

Remember that the business logic, the processing in the CICS application of the business requests to
update the business data, are largely unaltered by the changes in presentation logic. The same kinds of
requests, to do the same kinds of work, are still going to be received by the businesslogic; it is the way
that the results are viewed by the user that has changed. The main elements of capacity planning for
such a change involve understanding how much extrait may cost, in which components of your systems
isthe cost to be applied and, if your current system cannot support such an increase, what upgrades you
should consider.

It should be remembered that increased functionality will cost more to support; the old adage "there is
no such thing as afree lunch" remains true, even when Web-enabling. For example, using the 3270 Web
bridge is considerably more costly than using the CWS with new Web-aware presentation logic, but
using the 3270 Web bridge does not require the application changes that the new Web-aware application
would.

In the following sections, we discuss each of the CICS Web-enabling technologiesin the light of our
results.

8.2.1CWS

The observations and recommendations given in this section apply to CWS support in general, either via
the 3270 Web bridge or viaa Web-aware application design. Y ou should aso note that a significant
number of improvements to CWS were introduced in CICS TS V1.3. The main performance items of
interest are the introduction of persistent HT TP connection support, the ability to store HTML templates
in memory, and the removal of the 32K B restriction for asingle CWS request. Functional improvements
include the introduction of the CICS WEB and DOCUMENT APIs and the implementation of SSL
support for a CWS direct connection.

Direct connection

Using a direct connection with the CWS uses less total CPU than using the WebServer Plugin; thisisto
be expected, since the instruction path-length is much shorter and there in less inter-process
communication involved. However, it does use more CPU within the CICS address space than using the
WebServer Plugin, which could be a disadvantage if your CICS address space is CPU constrained.

CI CS WebServer Plugin

http://www.s390.ibm.com/java

Using the WebServer Plugin does cost a bit more than using a direct connection. This extracost is
incurred within the Web server address space and includes the CPU usage of the CICS supplied CWS
WebServer Plugin, which replaces the function of the CICS sockets listener. The extra cost should be
borne against the extra functionality provided by the Web server. Using the Web server may be the
preferred option if you wish to combine calls to different OS/390 servers, or want to isolate your CICS
system from direct Web access, or off-load some of the CWS processing to the Web server.

The CWS WebServer Plugin uses an External CICS Interface (EXCI) connection to communicate with
the CICS region. Y ou can verify that this connection has sufficient sessions or pipes allocated by using
CICS statistics reporting.

Network design

Good network design and capacity is vitally important to a successful Web-enablement. The response
timesin CICS are going to be a small contributor to the overall response time. Most of the user-
perceived response time from a Web browser will depend on network response.

HTTP datastream

In our tests we found the costs of transmitting data over HTTP connections increased linearly with size,
and at small sizes (afew KB), were only asmall fraction of the costs involved. Y ou should be aware that
the HTTP headers are added to the data to be transmitted, and this can mean that an additional 200-300
bytesis added to the data actually transmitted. CICS monitoring information records the size of HTTP
datastreams at a transaction level (for more information, look at the DFHWEBB performance data group
described in the CICS Performance Guide , SC33-1699).

Persistent HTTP connections

Using persistent HTTP connections will reduce the overall cost of transmitting data over HTTP
connections. However, be aware that when using a direct connection there will be along-running Web
attach transaction (CWXN) for every active connection. These will be terminated by the Web browser or
when the SOCKETCL OSE time-out interval in the TCPIPSERVICE definition is reached. When using
persistent HT TP connections, you should consider whether the number of long-running tasks can be
supported compared to the amount of CPU time you save by using persistent connections. Y ou can use
the SIT parameter MXT and add the Web attach transaction (CWXN) to a TRANCLASS with a
MAXACTIVE setting to stop Web-based requests from flooding your CICS region.

Restricting TCP/IP requestsinto CICS

Aswell as limiting Web requests into CICS by limiting the number of active tasks, you should consider
the number of requests you are prepared to have buffered by TCP/IP. Specifying the BACKLOG
parameter in the TCPIPSERVICE definition will limit the number of requests held by TCP/IP. Make
sure that the TCPIP SOMAXCONN parameter (the maximum number of pending connection requests
gueued for any listening socket — the default is 10) is greater than or equal to the BACKLOG setting.

TCP/IP buffer sizes
Set TCP/IP buffer sizes large enough to contain the largest data transfer expected. In our tests,

TCPSENDBFRSIZE and TCPRCVBUFRSIZE were set to 65536. These parameters are documented in
05390 V2R7.0 eNetwork CSIP Configuration , SC31-8513, along with advice not to over-allocate

buffer space. However, in our tests we found no significant difference in CPU usage compared to using
smaller buffers with smaller data exchanges, but we benefited from better network responses.

HTML template support

HTML template support has been greatly improved in CICS TSV 1.3. You are no longer restricted to
storing these templates in the DFHHTML PDS; now you can use DOCTEMPLATE definitions to locate
them in many kinds of CICS-managed storage. The best performance is achieved by defining them as
programs;, details on how to do this are given in the redbook CICS Transaction Server for OS390
Version 1 Release3: Web Support and 3270 Bridge , SG24-5480.

CWS temporary storage queue placement

The TSQPREFIX referred to in the CICS TCPIPSERV I CE definition gives you the opportunity to
choose the location of the CICS temporary storage queue (TSQ) that will be used to hold the data
exchanged with the Web client. The best performance will be achieved if this TSQ is defined as MAIN
storage. However, if large amounts of data are to be exchanged, it might be appropriate to make this
storage AUXILLIARY. Note that using AUXILLARY storage queues will result in the data being
stored on DASD. Thiswill increase disk 1/0O and may therefore increase end user response times.

8.2.2 CWSand 3270 Web bridge

This section deals with the CWS factors affecting performance of the 3270 Web bridge. Y ou should also
refer to the general advice on CWSgivenin 8.2.1, "CWS" on page 133 .

Pseudo-conversation length

The key factor when using the 3270 Web bridge is the length of the associated 3270 pseudo-
conversational chain. Thisis because the 3270 bridge facilities and state data are created at the
beginning of each pseudo-conversation and then destroyed afterwards. The longer the pseudo-
conversation lasts, then the less management of bridge facilities and the less state data is needed.
However, there is no benefit to be gained in deliberately lengthening a pseudo-conversational chain; you
should only consider merging separate pseudo-conversations into one.

Size of HTTP datastream

The amount of data transmitted per 3270 screen image is not such an important factor when estimating
CPU usage with the 3270 Web bridge. Thisis because the average amount of data representing a 3270
screen image shows little variation, and in any case, isrelatively small (about 2KB). In our
investigations in Chapter 5, "CWS with Web-aware presentation logic" on page 65 , we showed that
sending such relatively small amounts of datais only asmall proportion of the overall CPU costs of
using CWS. More important factors are the number of CICS tasks and whether or not HTTP persistent
connections are used.

8.2.3 CWSwith Web-awar e presentation logic

This section deals with the factors affecting performance of CWS when using new Web-aware
presentation logic. You should also refer to the general advice on CWS givenin 8.2.1, "CWS" on page
133 . Note that our capacity planning estimate for Trader using the CWS with Web-aware presentation
logic was somewhat |ess than that measured for the actual Trader application; refer to 5.3.3 ,

"Confirming our estimate”" on page 81 . We believe this to be because the Trader Web-aware logic
contains additional logic such as building templates and storing state data. Such costs should be factored
into any of your capacity planning estimates by careful measurement.

Size of HTTP datastream

The size of the HTTP data stream does affect the CPU usage of the CWS and is covered in more detail
in Chapter 5, "CWS with Web-aware presentation logic" on page 65 . However, as can be seen from the
eguations in Figure 34 on page 77 , the cost is arelatively small component if only afew KB of dataare
transmitted asin our Trader application. In this case it is more important how many CICS tasks run,
since the dominant cost is the null or fixed cost. Since much larger amounts of data can now be
transmitted in CICS TS V1.3, then the cost of data transfers can become significant. It was also
discovered in our tests that the sending of data using CWS is significantly less expensive than the
receiving of data.

Programming considerations

We recommend using the new DOCUMENT and WEB APIs provided in CICS TS V1.3 when creating
new Web-aware presentation logic. This makes HT TP presentation programming much easier than
before when using the COMMAREA manipulation technique. In our test results there was little
difference in costs between using the WEB APl and using COMMAREA manipulation (see Figure 31

on page 74).

The CICS Web Interface (CWI1) in previous releases of CICS recommended running your Web-aware
presentation logic in the converter phase (this was intended to ease access to HT TP data areas which are
now readily accessible using the WEB API). Thisis no longer necessary, and by running your Web-
aware presentation logic as anormal CICS program, this gives a small additional benefit of saving a
CICSLINK call.

8.2.4 SSL with CWS

CTS V1.3 usesthe system SSL toolkit, part of OS/390 V2.7. Make sure you have the current System
SSL and Web server or CICS TSV 1.3 service applied if you wish to use this function.

There are two processes that SSL supports. handshaking to establish a secure connection, and data
transmission over this secure connection.

8.2.4.1 Handshaking

SSL handshaking is likely to the be most CPU intensive part of using SSL. In our capacity planning
estimate SSL handshaking accounted for 82% of the SSL costsin our business transaction. Thereforein
order to reduce the costs of SSL you should design your application to have the lowest handshaking
costs possible, with regard to any security considerations you may have.

A full handshake is the most CPU-intensive phase of SSL and is performed at the start of each SSL
session. An SSL session may be re-established when a client makes a new HT TP connection. Thisis
achieved by passing the previous SSL session ID to the server. An SSL session ID remainsvalid for a
period determined by the server; in the case of CTS V1.3 thistime-out period is defined by the SIT
parameter SSLDELAY . If an SSL session is re-established by this method then a shorter or "null" SSL
handshake is performed, which is considerably less CPU intensive. The value of SSLDELAY inthe SIT

should be set as high as possible, with regard to any security concerns you may have about the time an
SSL session ID may remain unused but secured.

The use of the S/390 Cryptographic Coprocessor Feature was very successful in reducing the CPU costs
associated with the full handshake, particularly when client certificates or the larger 1024 bit server key
was used. If you are not able to use the Cryptographic Coprocessor Feature, the use of the smaller 512
bit server key will reduce the cost of the full SSL handshake. The use of persistent HT TP connections
ensures that after afull or null SSL handshake, no other SSL handshaking is performed until the
persistent HTTP connection is broken. In CICS, a persistent HT TP connection will be broken either
when CICS times-out the connection according to the SOCKETCLOSE vauein the TCPIPSERVICE
definition, or when the Web browser terminates the connection.

Note that although we did not test the usage of the Cryptographic Coprocessor Feature with SSL
handshaking and the CICS WebServer Plugin, the OS/390 Web server can utilize Cryptographic
Coprocessor Feature in the same way as we demonstrated for the CWS direct connection.

TCBs

SSL support in CICS TS V1.3 uses a pool of TCBs dedicated to SSL work, the S8 TCBs. The number of
S8 TCBsis specified using the CICS SIT parameter SSLTCBS. Each new TCB occupies an amount of
storage below the 16MB line. Thusif your CICS DSA usageis critical (for instance, you have lots of old
24 bit programs) you may be restricted to the number of S8 TCBs your system can support. CICS
monitoring and statistics data can be used to measure the amount of CPU time these TCBs use.

TCB stealing

All forms of the SSL handshake are expensive but good scaling was evident for all variations of the
handshakein CTS 1.3. The amount of full handshakes should be minimized to reduce CPU usage by
using persistent HTTP connections and sufficient S8 TCBs.

Y ou should be aware that once the number of attached SSL clients exceeds the number of defined SSL
TCBsin aCICS region, then subsequent HTTPS requests will 'steal’ the least previously used SSL TCB.
Since thereis aone to one affinity between a HTTPS session and an individual SSL TCB, then TCB
stealing will cause Web browsers that send a subsequent HTTPS request to CICS to incur the additional
cost of an SSL null handshake and the creation of anew HT TP connection

8.2.4.2 Data transmission

Once the SSL handshake has been performed and the Web client and target CICS region maintain a
persistent HT TP connection, data transmission is the only additional cost to SSL operation. In our
capacity planning estimate the SSL data transmission accounted for only 18% of the SSL costs but you
may experience a higher percentage than this, if you transfer larger datastreams or if you have lower
SSL handshake costs.

The Cryptographic Coprocessor Feature supports data encryption using the DES or Triple DES ciphers,
and can be used with either the CWS direct connection or the CICS WebServer Plugin. In our tests we
guantified savings when transferring data using the triple DES cipher. We aso found that using the
RC4-MDS5 bit cipher with either the 40 bit or 128 bit key cost the same in terms of OS/390 CPU usage,
and also cost less than the use of the triple DES cipher using cryptographic hardware. The reason that
the RC4-M D5 40 and 128 bit ciphers cost the same is because they both pass a 16 byte key length into

the encryption algorithm. The difference is that 40 bit encryption uses 'salted’ (unencrypted random data)
as part of key-block used to generate the 16 byte key. This reduces the strength of the encryption, but the
path length remains the same.

8.2.5 CICS Transaction Gateway

In this section we shall examine the principal factors affecting CPU usage when using the CTG.

Java support

Java support in OS/390 is being continually improved. Y ou will receive significant performance benefits
from being at the most recent levels of OS/390 (with the associated Java Development Kit, TCP/IP and
WebSphere Application Server versions).

8.2.5.1 Java applets

This section discusses the important factors when using a CTG appl et architecture.

Network protocol

The network protocol used to connect your applet to the CTG Java gateway application will have a
significant effect on system performance. Thisisillustrated in our test results (Figure 49 on page 116)
where we found the CTG TCP/IP socket protocol performed better than the CTG HTTP protocol. Y ou

may, however, choose to use HTTP for its ease of routing, since HT TP flows are much easier to route
through an HTTP application proxy server in afirewall.

Both the CTG HTTP and TCF/IP protocols allow for connection reuse, whereby the connection from the
applet to the Java gateway application is kept open for the duration of several External Call Interface
(ECI) calls. Figure 49 on page 116 demonstrates the considerable saving this has for data transfers using
the TCP/IP protocol. The HTTP protocol will also experience a saving with connection re-use, but you
should be aware that the CTG HTTP protocol handler does not support persistent HTTP connections.
This means that even if the CTG HTTP connection is re-used across ECI calls there will still be a new
underlying TCP/IP socket open and close for every HTTP request.

Applet data transmission

The size of the ECI COMMAREA has a significant effect on CPU usage in the Java gateway application
as shown in Figure 50 on page 117 , and thus reduction of data transmitted is an important performance
factor. There are techniques to reduce the amount of data passed, which fall into three broad categories:

1. First, you should design the application so it has the minimum number of data flows from the
Web client through to the CICS server. Y our options may be limited by the existing interface
offered by your CICS application, and your ability to re-engineer these interfaces.

2. Second, you should design the application to transmit only the data essential to the Java
application, that is, only the datathat it directly needs for its presentation or business logic.

3. Third, you can compress or truncate the data flowed across the network.

Datatruncation facilities are built into the CICS Transaction Gateway and CICS client-server flows and

can be easily invoked as follows:

1 The CICS Transaction Gateway provides two methods for limiting the amount of data transferred
when using ECI calls from an applet. The ssetCommareaOutboundL ength method controls how
much of the CICS COMMAREA will be flowed from the applet to the Java gateway application;
and the setCommareal nboundL ength controls how much of the COMMAREA returned by CICS
is flowed from the Java gateway application to the applet. Note that these calls do not affect the
actual length of the COMMAREA returned to the application, just the amount of the
COMMAREA sent across the network. Y ou should always design these calls into your appl et
code if you wish to minimize the data sent from the appl et to the Java gateway application.
Without these calls, the whole string representing the COMMAREA will be transmitted, including
any trailing null characters. Note that these methods were not used in our testing.

1 The CICS Externa Call Interface (EXCI), in combination with the CICS Inter System
Communication (ISC) code, provides truncation for EXCI flows. Any trailing nulls are not
physically passed from the client process to the CICS region. This truncation is automatic and not
configurable. It is appropriate when transmitting data from CEC to CEC in aParallel Sysplex,
since thisinvolves network communication by means of the sysplex coupling facility. Thusyou
should design your CICS COMMAREAS to be padded with trailing nulls and to store data
efficiently in the beginning of the COMMAREA.

Data compression is applicable when the system is network 1/0 bound and yet still has CPU cycles
gpare. Thiswas not investigated in our performance studies, but other internal IBM studies have shown
that savings are only likely to occur if many clients are trying to transfer large amounts of data over a
low bandwidth network. In most normal circumstances, using data compression will only add to the
CPU usage in the OS/390 system.

1 The CICS Transaction Gateway security exits can be used to compress data instead of, or as well
as, encrypting data. The datais compressed asit leaves the applet and uncompressed asit enters
the Java gateway application. Examples of how to use these exits for data compression are given
in the ClientCompression.java and ServerCompression.java samplesin the
samples\Java\com\ibm\CICS Transaction Gateway\security directory, and aworking exampleis
given in CICS Transaction Gateway with More CICS Clients Unmasked , SG24-5277.

Figure 58 illustrates the possible points for data compression and truncation, when using an ECI based
Java applet viathe CICS Transaction Gateway to a CICS server.

o | I it Py e

= —— Catwwmy
1 wha Nl ol i rusln
e focicedos 8 5| i |
e i "J N "\ gy sy i
ki
EEEEIII B " I - i
L LG o e -
Ty EEEE e ot
\ e
.] -.f i
S .
P -
e iy, i i i)
e,)
it [aainaiae] [o

Figure 58: Data compression using CTG applets

If using the servlet architecture, it is only possible to reduce the data transmission at the point where the
dataflows from the CICS Transaction Gateway to the CICS Server, since the CICS Transaction
Gateway methods are executed within the Web Server.

Whatever architecture you use, it is best to compress the data as early as possible in the life cycle of the
data to reduce the flows through the different components. If encrypting data, you should ensure that
thisis performed after any compression routines for reasons of efficiency.

The items above are described in more detail in the "Performance and Scaling” chapter of Revealed!
Architecting Web Accessto CICS, SG24-5466.

Thread usage

The CTG Java gateway application is a multi-threaded Java application. These threads are held in two
pools, connectionManager threads and worker threads. A connection thread is needed for every
connected Web client, and aworker thread is needed to process the ECI request to CICS. The number of
threads the Java gateway application uses is defined by the Maxconnec t and Maxworker parameters
contained in the CTG.INI file. Thisis described further in "CTG thread usage" on page 108 .

It was found in our tests that the Java gateway application could not use more than 150 CPU% out of the
500% available on our R55 CEC. Increasing thread counts had no further effect on the systems
utilization or throughput. We recommend that you consider using TCP/IP port sharing to distribute work
across multiple Java gateway applicationsif you need to increase throughput in such circumstances. As
isshown in Figure 51 on page 118 , using TCP/IP port sharing and multiple Java gateway application
address spaces can give a highly scal able architecture when using the CTG. The point at which the CTG
Java gateway application may become thread constrained will depend on several factors and can only be
determined by experimentation. However, one of the principal factorsis the longevity of the call to the
CICS application, since thiswill have a bearing on the worker thread usage within the Java gateway
application.

The number of concurrent EXCI calls that the Java gateway application can maketo a CICSregion is
determined by the number of pipes (sessionsin the CICS definition) defined on the EXCI connection to
be used. A maximum of 100 can be defined, but it is unusual to find in practice that anywhere near this
many are in concurrent use. Y ou can use CICS statistics to determine use count of these sessions or
pipes. If you have long-running programs in the CICS region, you are more likely to need more pipes.

8.2.5.2 Java Servlets

In this section we will discuss the important performance factors when using a CTG servlet architecture.
Javalogic

The servlet is essentially Java code executing within the OS/390 JVM that builds and sendsHTML to
the Web Client. There are certain Java functions that are expensive to execute, string handling for
example, so bear in mind that you must pay the cost of executing the Java presentation logic in the

servlet. Thisisthe primary reason why the CPU usage of the servlet test scenario was considerably
higher than that of the Java applet test scenario.

Note that when developing servlet presentation logic you should consider that a complex serviet HTML
GUI will require the re-transmission of the complete HTML page for every Web request. Y ou may
therefore want to reduce the size of servlet data transmissions by developing aless complex GUI.

An advantage of the servlet architecture over the applet architecture is the ability to condense multiple
ECI callsto a CICS region into one Web user response using new business logic implemented in the
servlet. In our tests we found that the ECI call within servlet was only 24% of the total servlet cost, thus
using new business logic to condense multiple servlet calsinto one Web request may well give large
overall savings. We did not exploit this feature in our capacity planning model with Trader, since every
user Web request drove one ECI call.

Servlet data transmission

With the servlet architecture there are two network connections:
1 The connection from the Web browser to the Web server viaHTTP
1 The connection from the Web server to CICS viathe EXCI

The IBM HTTP server provides for persistent HT TP connection support, and in our tests we found a
saving of about 10% when enabling persistent HTTP connections. Thisisillustrated in Figure 55 on

page 125 .

The connection between the servlet and target CICS region isviathe EXCI. This usesthe CICS MRO
function. MRO functions are a very efficient cross-system communication mechanism, that can use
Cross-memory communication between partners in the same MV S image, or (cross coupling facility)
XCF functions between partners on different members of a sysplex. Thus the points outlined in , "
Applet data transmission " on page 140 should be considered. However, you should note that the CTG
method setCommareal nboundL ength has no effect within the servlet environment, since the
communication from the CTG to the Java application is all within the Web server address space. Also
note that the setCommareaOutboundL ength method can be used to reduce the length of the
COMMAREA sent from the servlet to the CICS region, which may be appropriate with large amounts
of datatransferred.

Thread usage

The Web server servlet engine is a sophisticated multi-threaded environment within which the CTG Java
methods are invoked. Y ou should make sure that the Web server has sufficient threads to support your
workload. WebSphere Application Server provides a graphical monitoring function that enables you to
determine thread usage.

However, the same considerations apply as they did to the CTG Java gateway application threading
model discussed in the applet section " Thread usage " on page 143. If you experience an inability to
increase throughput beyond a certain point, we would recommend using the OS/390 Web server in
scalable mode, whereby multiple address spaces are created based on the rate of Web requests.

Additional costs are likely to be incurred if larger data streams are returned from the servlet to the Web
browser, since these must be processed by the Web server and TCP/IP. Also, if more complex Java
presentation logic isimplemented in the servlet, additional costs are also likely to be incurred. This
depends on processing of the COMMAREA within the servlet to produce output for inclusion in an

HTML page; this cost is not factored into our capacity planning study.

Apart from these CICS-specific items, you should aso be aware of more general servlet performance
considerations, such as those discussed in OS390 e-business Infrastructure: IBM WebSphere
Application Server 1.1 - Customizing and Usage , SG24-5604.

8.3 Using too much CPU

Multi-tasking in an S/390 environment is achieved by using multiple TCBs, or if using UNIX System
Services, by using multiple threads. A multi-TCB or multi-threaded design enables an OS/390 address
gpace to utilize more than one processor concurrently in a multi-processor CEC. The 0S/390 CTG and
the OS/390 Web server are both multi-threaded UNIX System Services applications.

However, for a CICS region, the majority of the processing occursin one TCB, the QR (Quas Re-
entrant) TCB. Additional processing occursin the RO TCB, when opening and closing CICS data sets
and making callsto RACF, the FO TCB, when opening and closing user data sets, and optionally (when
the SUBTSKS SIT parameter is set to 1), the CO TCB for processing concurrent operations like VSAM
requests.

While thisis till true for the business logic in a CICS Web application, the design of CICS Web support
utilizes two additional TCBsto handle TCP/IP sockets and a configurable number to handle SSL related
work. The CICS Performance Guide , SC33-1699, describes how to determine if a CICS regionis
approaching maximum capacity using CICS statistics reports and RMF records. This method requires an
analysisto determine how busy the different TCBs used by the CICS region are. If any single TCB
approaches 70% busy, then this CICS region is reaching maximum capacity.

The CPU used by specific CICS TCBsis of particular interest if you are using a direct connection to
CICS Web support or using the 3270 Web bridge, since the CPU consumption within CICSislikely to
be considerably higher in these cases. However, it can happen in such aregion that the overall CPU
consumption exceeds that of one single processor without the CICS region actually being processor-
constrained. For example, we show an extract from a statistics report in Figure 59 for one of our SSL
test measurements.

Y
s Lo [Ee-Time 3 L0 T as= Papat 3013 %] -M-'_'*._I -,
Elapaed
time

Aftreds fpans TP Ture 150

Addrvds Space SR80 Thie. G5 1 3800 . B CICSCPU
e o I Cadis 4 poponds

¥ puriber of Eask 37 per TCB
moda

Figure 59: CICS dispatcher statistics extract

Thisfigure gives details for a CICS region supporting Web connections with SSL support, and shows
the following CPU% usage by TCB mode:

1 3.0% QR (quasi-reentrant)

1 0.7% SL (sockets listener)

1 0.1% SO (sockets requests)

1 116.7% S8 (SSL - using up to 70 TCBS)

Y ou can see from the Accum CPU Time/TCB column that the CICS region used over 365 CPU seconds
during a 303 second collection interval (which equates to 120% CPU), even though the traditionally
critical QR TCB used only 9 CPU seconds (3% CPU). This data was from a specific SSL test and thusis
by no means representative of normal CICS usage.

8.4 Balancing the CICS Web wor kload

Not only will you have to consider the additional cost that each business transaction may incur by
implementing Web-based access, you will a'so need to pay attention to the response times perceived by
the end user. If that user is connecting through the Internet, much of the network transport time will be
beyond your control. In addition to the CPU utilization and response time you should also consider the
impact Web-enablement will have on transaction rates. Are you going to make the application available
to alarger group of users?

If accessis by an intranet connection, then the potential group of users will be restricted to those within
the intranet boundary; probably the same group of employees that would currently use the application
using 3270 terminals. If the Web-enablement has widened the user group, then the additional costs of
running the business application more frequently must be planned for.

Access by an extranet connection, two communicating intranets, allows access to the business
application by awider group of users. Thisislikely to happen where the extranet is alowing two
companies to access the same application, such as a supplier company checking the state of another
company's stock.

Access by an Internet connection would open up the CICS application to a potentially enormous group
of users. The attempted access to the business application from an unrestricted Internet base of users
could flood the target CICS system. It is possible to limit the number of requests that one CICS region,
CTG Javagateway application, or Web server address space will allow to connect. However, slow
response or rejected requests will not be what the user wants.

A better solution isto ensure that your system is scalable, and in an OS/390 Sysplex environment, this
means considering forms of workload balancing. Figure 60 shows how different OS/390 components
can fit together to provide a scalable server environment.

1 TCP/IP port sharing enables multiple CICS regions on the same MV S image to accept incoming
HTTP requests sent to asingle, shared port number. CTG Java gateway applications and Web
servers may also exploit this function.

1 TCP/IP Dynamic DNS allows multiple CICS regions in the same sysplex to listen for requests
sent to a generic hostname and port number. 1t can exploit OS/390 Workload Management to
bal ance the workload across these systems within a sysplex.

1 Multiple CICS regions controlled by CICSPIlex SM can manage requests originating from HTTP
requests. The ability to dynamically workload manage Distributed Program Link (DPL) calls
within CICS TS V1.3 will greatly benefit such a configuration.

.]
(= | [e e 1
v N .. S I.'iﬂli'\’;"\-
] | L i gt DASD
Fggon
Wil Se i "F.'.
~ i E k. Chyramee: rincd
_-[I U e 40 /
S| | era | R /
. | “
Ehu-l = : \ \r_' =
L] B o l_':i‘_'i
G e
A A Dwming
i+ ./l Bagen
b
Wi /r)
Sphén
Eoy

Figure 60. Components to provide workload balancing

The following manual is a good source of reference on OS/390 workload management: MVS Planning:
Wor kload Management , GC28-1761.

For information on balancing work in a CICSPlex, refer to CICSPlex: SM Concepts and Planning ,
GC33-0786

For information on dynamic DNS, refer to OS390 eNetwor ks Communications Server: |P Planning and
Migration Guide , SC31-8512.

For information on TCP/IP Port sharing, refer to the Communications Server: |P Configuration
Manual , SC31-8513.

8.5 Key pointsto consider

We have demonstrated in this book that for each of the Web-enabling alternatives presented, CICS
Transaction Server V1.3 and other supporting software can provide a scalable solution. To summarize
the main points of our studies, you need to address the following points as they relate to your
application.

Separ ation of business and presentation logic

Can you separate the presentation and business logic in your existing CICS application and size the
business logic costs?

If you cannot separate the presentation and business logic, you will need to consider a 3270 based option
such as the CWS 3270 Web bridge, a non-OS/390 CTG using the EPI classes, or Host On-Demand. This
redbook only gives information on the performance of the 3270 Web bridge. Note that if you can
separate the business logic, thiswill give you more Web-enabling options and allow usage of solutions
which are less CPU intensive and scale better.

CWS 3270 Web bridge
If you intend using the 3270 Web bridge, how long are the pseudo-conversations in the business

transactions? Business transactions comprising short pseudo-conversations use more bridge facilities
than longer pseudo-conversations, so they are proportionately more expensive.

CWSwith Web-awar e presentation logic

If you intend using CWS with Web-aware applications, do you know your HTTP send and receive sizes,
since these have a significant affect on performance?

CWSwith SSL

If you intend to use SSL to secure your CWS solution, your SSL handshake costs are likely to be the
most CPU intensive part of the solution. Y ou can reduce SSL handshake costs by:

1 Using persistent HT TP connections

1 Using the $/390 cryptographic hardware

1 Enabling SSL session ID-reuse
OS/390CTG

If you intend to use applets and the OS/390 CTG, you should use the CTG TCP/IP protocol if possible,
and re-use the TCP/IP connection across ECI calls. Y ou should minimize the amount of data transmitted
in the ECI COMMAREA wherever possible.

If you intend to use servlets, you will need to use a servlet engine such as WebSphere Application
Server. Ensure that you have enough threads defined for this server and that your Java presentation logic
is efficient. Consider using new businesslogic in your servlet to combine the results of multiple ECI
callsto reduce the number of network transmissions.

Workload management

Take into account the increased workload likely to be put upon your target OS/390 system. Y ou may
need to implement aform of workload management to handle the increased CPU usage or to eliminate a
single point of failure. The OS/390 TCP/IP port sharing or Dynamic DNS features enable you to balance
work across multiple CICS Web owning regions, CTG Java gateway applications, or instances of the
0S/390 Web server.

Make sure that your network is capable of handling the projected extra work; any delays in the network
are likely to significantly increase end user response times.

Check your Web-enabled application operation and performance on atest system. Use monitoring and
statistics to verify your planning information.

Chapter 9: CICS Web capacity planning
example

Overview

In this section we tell the fictional story of the Trader Company, and the capacity planning decisionsit
made when Web-enabling its CICS Trader application.

The Trader Company is a share trading corporation that runs its key business application on an OS/390
system using CICS. It is considering migrating this system to an e-business infrastructure and, as afirst
step, would like to enable access to its Trader application from awider range of users than its traditional
brokers who used only 3270 devices. We follow the steps the Company takes on this e-business path. It's
asimple story, but the elements are applicable to more complex cases, too. Each step includes an
estimate of the increase in systems usage as demand for the application increases, which are reported as:

1 Throughput — the number of business transactions per second expected

1 CPU usage— the amount of CPU time in ms estimated to be needed to support the transaction
rate expected

1 Target system usage — the percentage of the total CEC capacity the CPU usage represents, for
the machine model specified

9.1 The 3270-based business

The Trader Company runs a CICS application, Trader, to buy and sell shares. In its origina form, this
application is accessed by users connected to a CICS region using a 3270 terminal.

From our measurements presented in Chapter 4, "CWS with the 3270 Web bridge" on page 51 we know
the cost of a single business transaction using 3270 access. These costs are shown in Table 19 .

Table 19: Single business transaction using 3270 access
|CICS TRADERBL||CICS other|VTAM & TCP/IP||[CTG|Web server||0S/390 other |[Total|
| 17.1 L 92 | 15 L- L - | 94 [372]

1 Throughput — 10 business transactions per second
1 CPU usage — 372 CPU ms

1 Target system — 7% CEC of 9672-R55

9.2 Web accessusing CWSwith the 3270 Web bridge

The Trader Company acquires another Company and needs to offer the Trader application to the clients
of their new Company. They have two options, either to extend their 3270 network or to make the
Trader application accessible from the Web browsers that every employee has on their workstations.

The Web-enablement strategy for the Trader application is still to be decided, but meanwhile the
Company decides to implement atactical solution, one that will solve the problem now but can be
replaced by alonger term strategic solution at alater date. Thistactical solution for Trader isto use
CICS 3270 Web bridge to give access to al employees of the Trader Company through their Company
intranet. No new applications are needed, and the Trader application requires no changes to be Web-
enabled in this fashion. No particular skillsin HTML or Web servers needed, but approximately double
the number of requests are anticipated.

From our measurements presented in Chapter 4 , "CWS with the 3270 Web bridge" on page 51 we know
the cost of a single business transaction using the CICW Web bridge. These costs are shown in Table
20.

Table 20: Single business transaction using CWS with the 3270 Web bridge
|CICS TRADERBL||CICS other|[VTAM & TCP/IP||CTG|Web server||[0S/390 other||Total|
| 17.1 | 928 | 17.3 Il - - | 34 1304

1 Throughput — 20 business transactions per second — a doubling in the throughput.

1 CPU usage — 2612 CPU ms — note that this exceeds the capacity of one CPU, and that most of
that CPU usage is by CICS. There are a number of solutions possible to support this demand on
the same processor. For example, create two CICS regions that can handle incoming requests
through TCP/IP port sharing. Although no application changes are needed, some systems
configuration work will be. Refer to 8.3, "Using too much CPU" on page 146 for further details
on solutionsto this situation.

1 Target system — 52% CEC of 9672-R55.

9.3 Web access using CW S with Web-awar e presentation logic

The Web-enablement strategy for the Trader Company is beginning to take shape. Thereis further
growth expected for the Trader application, and the Company is growing Web skills. Web page and
HTML design is now understood by the application development group. The 3270 bridge solution
works, but it has an expensive bridge layer and still looks like a 3270 screen.

To give the Trader application a better Web look and feel, the 3270 presentation logic in CICSis
replaced by a new CICS Web-aware logic. This can not only use HTML but can also be used to create
new paths to the business logic. For example, in the case of Trader, drop-down boxes are used to
provide a Company selection, and the ten CICS tasks it took to execute the business transaction with a
3270 interface are reduced to five with the Web-aware presentation logic.

From our measurements presented in Chapter 5, "CWS with Web-aware presentation logic" on page 65
we know the cost of a single business transaction using adirect connection using CWS. These costs are
shownin Table 21 .

Table 21: Single business transaction using CWS and Web-aware logic
|CICS TRADERBL||CICS other[VTAM & TCP/IP|CTG|Web server|[0S/390 other|[Totall
| 13.0 | 197 | 3.4 - | - | - | 385

1 Throughput — 20 business transactions per second.

1 CPU usage — 770 CPU ms, which is a substantial reduction compared to the previous CICS Web
bridge solution. At these levels of system usage, multiple CICS regions are not necessary, but may
just as well be kept for future growth or to improve application availability (by having more than
one CICS region available to service any requests).

1 Target system — 15% CEC of 9672-R55.

9.4 Web accessusing CWS and the CICS WebServer Plugin

The Trader Company is facing increasing demand for its Trader application, and it decides to invest
further in its Web support. It has implemented the OS/390 Web server on its OS/390 Sysplex and has
produced a standard format for its Company Web pages (such as including Company graphics, help and
e-mail contacts). CICS provides avery effective way of accessing business logic from Web browser
clients, but is not intended to provide full Web server facilities.

The Trader Company decides to update the presentation logic of the Trader application to meet
Company standards, and to have the Web server provide the more complex graphics needed asit can
efficiently cache such data. They aso decide to start using the CICS WebServer Plugin, since thiswill
reduce the load on their CICS region, even though the overall CPU cost increases.

From our measurements presented in Chapter 5, "CWS with Web-aware presentation logic" on page 65
we know the cost of a single business transaction using a WebServer Plugin. These costs are shown in
Table 22 .

Table 22: Single business transaction using CWS with WebServer Plugin
|CICS TRADERBL|[CICS other[VTAM & TCP/IP|CTG|Web server|[0S/390 other|[Total
| 13.0 | 144 | 3.8 | - | 402 | 44 |758]

1 Transaction rates — 30 business transactions per second.

1 CPU usage — 2274 CPU ms, of which only 822 msiswithin CICS — just within the capacity of
asingle CICS region, should their load balancing system fail.

1 Target system — 45% CEC of 9672-R55.

5 Web access Using CICS Transaction Gateway and applets

The corporation now takes the strategic step of using Javato Web-enable its Trader application. By
coding the presentation logic as an applet, the Trader Company can also include all sorts of other

features, such moving graphics and sound, and also continue to use the original CICS businesslogic.

They initially decide on using the CTG on OS/390 due to its high scalability, and decide to implement
an applet architecture. The applet will be initially designed for usage by alimited group of intranet
users. These users have known software levels, reasonably powerful workstations, and are within the
corporate firewall, so should work well with an architecture using CTG applets and the CTG TCF/IP
protocol.

From our measurements presented in Chapter 7, "The OS/390 CTG" on page 103 we know the cost of a
single business transaction using a CTG applet and a CTG TCP/IP connection. These costs are shown in
Figure 23.

Table 23: Single business transaction using CTG Java appl ets
|CICS TRADERBL||CICS other|VTAM & TCP/IP||CTG|Web server|[0S/390 other |[Total|
| 13.0 | 48 | 1.9 3L7]f - || 106 |[62.0]

1 Transaction rates — 40 business transactions per second

1 CPU usage — 2480 CPU ms of which 712 msiswithin CICS, and still within the capacity of a
single CICSregion.

1 Target system — 50% CEC of 9672-R55

9.6 Web Access Using CICS Transaction Gateway and servlets

The Trader Company decide that the time has come to open their Trader application to wider set of users
on the Internet. Initially thiswill be a pilot to a selected number of brokers via the connection of their
intranet to the Trader Company's network — an extranet. They anticipate a further increase in workload
due to this expansion.

The Trader Company decidesto invest its application development in Java servlets. It plansto
implement some new business logic for its Internet users within the servlet and to use the Java Server
Pages (JSPs) instead of applets for the presentation logic. It can re-useits CTG Java applet code with the
new servlet architecture. Usage of Java servletsis also seen as a strategic decision, since the Company is
interested in Enterprise Java Bean (EJB) support, and this will position them well to be able to utilize
this technology.

From our measurements presented in Chapter 7, "The OS/390 CTG" on page 103 we know the cost of a
single business transaction using a servlet to access a CICS application. These costs are shown in Figure
24

Table 24: Single business transaction using CTG Java servlets
|CICS TRADERBL||CICS other|VTAM & TCP/IP||CTG|Web server|[0S/390 other |[Total|
| 13.0 | 57 | 1.8 |l - | 96 | 189 |136.0

1 Transaction rates — 50 business transactions per second

1 CPU usage — 6800 CPU ms — which clearly exceeds the capacity of the current 9672 R55
S/390 system, since it has 5 CPUs (or 5,000 CPU ms per second). One solution is to upgrade the
processors — for example to the next generation of 9672. A 9672-R56 would give approximately
220% the capacity of a 9672-R55 based on the LSPR ratio for CICS.

1 Target system — 136% CEC of a 9672-R55 or 62% of a 9672-R56.

With a machine upgrade and software conversion to servlets, the Trader Company iswell placed to
exploit Enterprise Java, and to open up its business to users on the Internet.

9.7 Thefinal configuration

The Trader Company now runs five times as many business transactions as it did when using employees
working at 3270 screens. They are now devel oping Java programs to access CICS business logic and
have customers directly connected through the Internet.

A fina configuration could look something like Figure 61 . We have upgraded to a more powerful
processor and this is shown as a single system, but the various components of this system could be
spread across members of a sysplex to achieve system availability.

= =
- - L
- Saare | remial
. kb Dwsirg
T GKE
A
g
G s
o " ARG
o ——— A |] : .
s 5 VEAM
Welb prewaacs | Sreriag Pasa
....... - /'f
Sppicatian sean
e Ber -
=3 - -
-
—t st 1 HOR
i c1a
Wl s -

Figure 61: Thefina Trader configuration

TCP/IP port sharing and VTAM generic resource are used to balance work across multiple CICS
regions, or across multiple WebSphere Application Serversor CTG Java gateway applications. Web
clients and 3270 terminals are controlled by CICS Web Owning Regions (WORs) or Terminal Owning
Regions (TORs). Multiple CICS Application Owning Regions (AORs) are used to spread the work of
the CICS business logic. This requires that the datais able to be shared between them, thus VSAM
Record Level Sharing (RLS) is used to allow multiple accesses to the same VSAM file.

Appendix A: Test environments

Overview

This section details the hardware and software configuration used in the laboratory performance tests.

A.1 Hardwar e environment

The same OS/390 hardware was used for all the measurement tests presented in this book. This
configuration was a four member OS/390 Parallel Sysplex, but only two members of this sysplex were
used for the measurement; one to provide a platform for the system under test, and a second to provide a
platform for the network simulation driver (when using TPNS). Each sysplex member ran on asingle
9672 Central Electronic Complex (CEC). This configuration comprised:

1 A 9672-R55 processor (2GB storage) with 2 Cryptographic Coprocessors available where noted.

1 A 9674-CO05 coupling facility (2GB storage)

1 Adequate RAMAC DASD to eliminate 1/0 constraints

For tests needing Web client simulations, either TPNS on OS/390 or the Compuware QAL oad product
on two nodes of an SP2 AIX processor was used.

The network connecting the OS/390 and Al X systems comprised:
1 AnATM LAN emulation client (Token Ring) adaptor card on each of the AIX SP2 nodes
1 An ATM (Asynchronous Transfer Mode) network

1 An OSA-2 card on the /390 processor set to operate in TCP/IP Passthru Mode to provide token-
ring LAN emulation client (LEC) services viathe ATM connection.

A.2 Softwar e environments

The software levels used in all our tests were as follows; any variations or additional PTFsrequired are
later noted in each section.

1 OS/390 V2.7, including:
i VTAM V4.7

i DFSMSV15 (VSAM)
1 CICS Transaction Server for OS390 V1.3
1 TPNSV35

1 WebSphere Application Server V1.1, including:
i IBM HTTP Server V5.1

1 OS/390 Java Development Kit V1.1.8

1 OS/390 CICS Transaction Gateway V3.1

1 Compuware QAL oad/QARun software at V4.3

1 AIXV4.2.1.0
The following sections detail the pertinent configuration parametersin effect during the laboratory
performance tests. These parameters are not necessarily recommended for all environments, but werein
effect during our testing. Y ou should validate these settings in your environment.

A.2.1 The 3270 Trader tests

The following CICS System Initialization Table (SIT) parameters shown in Table 25 were used during
our tests.

Table 25: CICS SIT parameters

|Parameter ||Meaning ||Va|ue|
IAUXTR [Auxiliary trace flag |OFF |
|[CMDPROT |[EXEC storage checking INO |
[EDSALIM |EDSA limit 260M |
[HPO IVTAM High Performance Option |[YES |
ICVR |IRunaway task checking o |
INTTR |[Internal tracing |ION |
IMN |CICS Monitoring IYES |
IMNCONV [[Monitoring converse record option ||OFF |
IMNEVE |IMonitoring event class option lON |
IMNPER | Monitoring performance class option||OFF |
IRLS VSAM RLS support INO |
IMROBATCH]|Number of MRO requeststo batch [[1 |
ISEC || Security INO |
ISTGPROT ||Storage protection facility INO |
ISPCTR || Special tracing |OFF |
|SUBTASKS |Number of concurrent mode TCBs ([0 |
ISYSTR |Master system trace flag |OFF |
ITRANSIO | Transaction isolation INO |
JUSERTR | User trace flag |ION |

The LPA was used only for the following CICS modules which need to be located in the LPA: DFHIRP,
DFHDSPEX, DFHCSVC.

A.2.2 CICSWeb support with the 3270 Web bridge

The same CICS SIT parameters as used for the 3270 Trader testsin Table 25 on page 163 , were used
for the 3270 Web bridge tests. The SIT parameters modified for the 3270 Web bridge tests are
documented in Table 26 .

Table 26: CICS SIT parameters for CICS Web support

[Parameter |[Meaning Valuel
[TCPIP |ITCP/IP support for HTTP and 11OP ||[YES |
IWEBDELAY ||CWS time-out and garbage collection[|1,1 |

The CICS TCPIPSERV ICE definition used to configure the HT TP support for our test CICS region is
shownin Table 27 .

Table 27: TCPIPSERVICE definition

[Par ameter M eaning Value |
IBACKLOG [TCP/IP queue length 128 |
|SOCK ETCLOSE|HTTP persistent connection time-out|{000010|
ISsL |ISSL security INO |
ITSQPREFIX |TSQ template prefix for Web 1/0 ||defaullt |

The eNetwork Communications Server configuration parameters used to configure TCP/IP support are
listedin Table 28 .

Table 28: TCP/IP parameters

[Par ameter IMeaning Value]
IMTU (on GATEWAY statement) |[Maximum transmission unit size{[4500 |
|SOMAXCONN ||[Socket request queue length [[1024 |
IARPAGE [Time-out of arp cache 20 |
[TCPSENDBFRSIZE (on TCPCONFIG statement) |[Size of TCP/IP send buffer 65536
[TCPRCVBUFRSIZE (on TCPCONFIG statement)||Size of TCP/IP receive buffer (65536

The packet size for the Al X adapter card was allowed to default to 1,500 bytes, as using larger values
caused network instability.

A.2.3 CICSWeb support with Web-awar e presentation logic
CWSdirect connection
The same CICS SIT and TCPIPSERVICE parameters as documented in Appendix A.2.2 , "CICS Web

support with the 3270 Web bridge" on page 164 , were used for the CWS tests with Web-aware
presentation logic.

The only difference was that the TCPIPSERV ICE SOCKETCL OSE value was set to 20 seconds as

opposed to 10. This enabled persistent HT TP connections to be used with the longer think time imposed
by the larger number of clients. The value of SOCKETCLOSE was set to 0 when persistent HTTP
connections were not used.

CICSWebServer Plugin

When using CWS and the CICS WebServer Plugin, the following parameters were used in the 0S/390
Web server configuration file httpd.conf

DNS- Lookup of f

MaxActiveThreads 150

MaxPer si st Request 9999

ServerPriority -20

Service [iycuzcld/* [et c/ df hwbapi . so: DFHSer vi ce
Service /1 YCUzZC14/ * [et c/ df hwbapi . so: DFHSer vi ce
PersistTimeout 1 minute

CachelLocal MaxBytes 6 M

A.2.4 CWSwith SSL
The fix for the following CICS APAR was applied to the system:
1 PQ23421 - Enabling APAR for CTS 1.3 SSL
The fixes for the following System SSL APARs were applied to the system:
1 OW37136 - GA APAR for SSL base and strong crypto
1 PQ31399 - Provide full support for SSL session ID's
1 OW40099 - System SSL - externalization of gsk_user_set()
1 OW40974 - System SSL session ID comparison failure

1 OW38773 - System SSL utility program gskkyman generates csr files which do not contain
state/province information

The microcode fix RPQ8P1987, feature code 834, was applied to the S3/90 system to enable the
Cyrptographic Coprocessor Facility to assist in SSL handshaking.

The same CICS SIT and TCPIPSERV I CE parameters as documented in Appendix A.2.3, "CICS Web
support with Web-aware presentation logic" on page 165 , were used for the CWS SSL tests. The only
difference was that the TCIPIPSERV ICE parameters SOCKETCL OSE was set to 10 and the following
SIT parametersin Table 29 were used.

Table 29: CICS SIT parameters for CICS Web support with SSL
|Par ameter|[M eaning [Valud
IDSALIM |[Limit of dynamic storageareas ~~ |4AM |
ISSLTCBS |[Number of TCBsfor SSL processing|[70 |

In addition, the new SIT parameters SSLDELAY and ENCRY PTION and the TCPIPSERVICE
parameter SOCKETCL OSE were modified during each of the tests to produce the desired SSL test
scenario. A summary of the meaning of these new SSL SIT parametersisgivenin Table 30.

Table 30: SSL configuration parameters

lParameter |[Value IMeaning

ENCRY PTION|WEAK | This parameter controls the cipher spec for the SSL record protocol
NORMAL | negotiated during the SSL handshake.
STRONG

WEAK specifies the following list of ciphers:
1 RC4 encryption with a 40-bit key and an MD5 MAC
1 RC2 encryption with a 40-bit key and an MD5 MAC
1 No encryption withan MD5 MAC
1 No encryption with an SHA MAC.
NORMAL specifiesthe following list of ciphers:
1 DES encryption with a 56-bit key and an SHA MAC
1 RC4 encryption with a 40-bit key and an MD5 MAC
1 RC2 encryption with a 40-bit key and an MD5 MAC
1 No encryption with an MD5 MAC
1 No encryption with an SHA MAC.
STRONG Specifiesthe following list of ciphers:
1 Triple DES encryption with a 168-bit key and an SHA MAC
1 RC4 encryption with a 128-bit key and an MD5 MAC
1 RC4 encryption with a 128-bit key and an SHA MAC
1 DES encryption with a 56-bit key and an SHA MAC
1 RC4 encryption with a 40-bit key and an MD5 MAC
1 RC2 encryption with a 40-bit key and an MD5 MAC

1 No encryption withan MD5 MAC

|| || 1 No encryption with an SHA MAC.

SSLDELAY [[{600jnumber} |[Thisdelay specifiesthe length of time in seconds for which CICS
retains session IDsfor SSL connections. Session |Ds are tokens that
represent a secure connection between a client and an SSL server.
While the session ID isretained by CICS within the SSLDELAY
period, CICS can continue to communicate with the client without
the significant overhead of an SSL handshake. The value is a number
of seconds in the range 0 through 86400.

SSLTCBS { 8jnumber} This parameter specifies the number of CICS subtask TCBs that will
be dedicated to processing secure sockets layer connections. The
value is a number in the range 0 to 255. It controls the number of
simultaneous SSL connections that CICS can establish. A value of 0
means that no SSL connections are to be established. This number is
independent of and in addition to the TCBs specified in
MAXOPENTCBS. The TCBs used by SSL can consume
considerable storage below 16MB.

A.2.5 CICS Transaction Gateway

The same CICS SIT parameters as documented in Appendix A.2.1 , "The 3270 Trader tests' on page
163, were used for the CICS Transaction Gateway tests.

When using the CTG applet architecture the following parameters were used in the ctg.ini configuration
file for the CTG Java Gateway application.

maxconnect =1000

maxwor ker =75

pr ot ocol @ cp. handl er=com i bm ct g. server. TCPHandl er

pr ot ocol @ cp. par anet er s=port =2006; soti neout =9000; connectti meout =2000;
i dl eti meout =600000; pi ngfrequency=600000

prot ocol @ttp. handl er=com i bm ct g. server. Ht t pHandl er

pr ot ocol @tt p. paranet er s=port =8080; soti nmeout =9000; connectti neout=2000;
i dl eti meout =120000; pingfrequency=600000

The CTG values for initworker and initconnect are not given because our performance tests were run
after the workload had stabilized; thus only the maximum thread values, not the initial values, are of
interest.

When using the CTG servlet architecture, the following parameters were used in the OS/390 Web server
configuration file httpd.conf :

MaxActiveThreads 140
MaxPer si st Request 9999
ServerPriority -20
PersistTinmeout 1 mnute
CachelLocal MaxBytes 6 M

Appendix B: Performance data

Overview

This appendix contains all the unprocessed performance data from our laboratory workloads. This data
was collected from RMF reports. Each test was run in isolation with no other work active within the
0S/390 image. All Web client simulation software was executed on a separate system.

The CPU usage apportioned to each address space is reported together with the total CPU usage in the
system. The RMF correction factor has already been applied to all the data; this factor isused to
apportion to each address space that amount of CPU which is not quantifiable. The CPU usage in the
tablesis presented as percentage usage of a single R55 CPU . Thus the maximum possible total CPU
usage is 500 CPU% (or 5 CPU seconds per second) on our 9672-R55 test system, which contains five
CPUs. Note that the response times are not reported in our data, since all the recorded times were less
than one second. Thisis due to the simple nature of our test programs and the high network capacity of
our test network.

The definitions of the terms used in the tables are as follows;

CICSCPU is the recorded CPU usage charged to the CICS address space, expressed as a
percentage of one processor.

TCP/IP CPU isthe recorded CPU usage charged to the TCP/IP address space, expressed as a
percentage of one processor.

VTAM CPU isthe recorded CPU usage charged to the VTAM address space, expressed as a
percentage of one processor.

Web server CPU isthe recorded CPU usage charged to the OS/390 Web server address space,
expressed as a percentage of one processor.

CTG CPU isthe recorded CPU usage charged to the CTG Java gateway application address
space, expressed as a percentage of one processor.

Total CPU isthe total CPU usage within the OS/390 system, expressed as a percentage of one
processor.

Throughput is defined for each section.

Total CPU isthe total OS/390 CPU cost per request. It is calculated by multiplying the total

ms/request CPU% by 10 to convert to CPU ms, then dividing by the throughput.

B.1 3270 Trader application

Table 31 details CPU usage when running a 3270 Trader workload using TPNS. The results were
recorded using RMF monitoring. Throughput is defined as Trader business transactions per second; one
business transaction consists of 10 CICS tasks. For adiscussion of this datarefer to 3.2 , "Measured

CPU usage" on page 45 .

Table 31: 3270 Trader CPU usage
[Throughput||CICS CPU%|VTAM CPU%||Total CPU% |[Total CPU ms/request|

| 90 || 308 | 0.9 | 416 | 46.2 |
106 || 371 | 1.1 | 482 | 455

| |
| 121 || 411 | 1.3 | 520 | 43.0 |
| 151 || 502 | 15 | 612 | 405 |

B.2 CWSwith the 3270 Web bridge

The datain Table 32 and Table 33 shows the results for the tests using the 3270 Web bridge. A CWS

direct connection was utilized for these tests. Throughput is defined as Web requests per second; 200
simulated Web browser clients were in use for all tests. For adiscussion of this data refer to Chapter 4 ,
"CWS with the 3270 Web bridge" on page 51 .

Table 32: 3270 Web bridge, continuous pseudo-conversation

[Throughput|[CICS CPU%|[TCPIP & VTAM CPU%|[Total CPU%|Total CPU ms/request|

1572		1411	3.08	207	13.1
2088		1802	3.95	253	12.1
3096	2536	5.31	339	10.9	
509		4626	9.14	583	9.7
1118	8273	15.40	1012	9.0	

Table 33: 3270 Web bridge, non-continuous pseudo-conversation

[Throughput|[CICS CPU%|[TCPIP & VTAM CPU%|[Total CPU%|Total CPU ms/request|

1578	1552		2.90	220	13.9	
2102		2046	3.75	277	13.2	
3000	2966	4.64	380	12.7		
5894	5898	8.43	724	12.3		
9742		11086		12.30	1276	13.1

B.3 CWSwith Web-awar e presentation logic

In this section we present the results of our tests using CICS Web support and new HTTP based Web-
aware presentation logic, first using adirect connection to CWS and then using the CICS WebServer
Plugin. For discussion of this datarefer to Chapter 5, "CWS with Web-aware presentation logic" on

page 65 .

B.3.1 CWS and a direct connection

Table 34 details the actual HTTP data stream sizes sent and received by CICS Web support in our test
measurements using a direct connection. These data sizes include the HTTP header information. Send
data tests were implemented using the HTTP GET method, and receive data tests were implemented

using the HTTP POST method.
Table 34: CWS direct connection, data transmission sizes
Nominal Send or Application Persistent HTTP || Datareceived by || Data sent from
data size receive style connections CICS (bytes) CICS (bytes)
194 |

| 100 bytes ||
[

send || WEBAP ||
Il Il

persistent ||
Il

284 |
Il

kB	send		WEBAPI	pesistent	284	s004		
15kB	send	WEBAPI	persisent	284	15004			
32kB	send	WEBAPI	persisent	284	32004			
33KB	send	WEBAPI	persisent	284	33004			
50KB	send	WEBAPI	persisent		284	50004		
100bytes		receive		WEBAPI	persistent		421	116
5KB		recdive		WEBAPI	perssent		5321	116
15KB		recdve		WEBAPI	perssent		15321	116
32kB	receive	WEBAPI	persisent		32321	116		
33KB	receive	WEBAPI	persisent		33321	116		
50KB	receive	WEBAPI	persisent	50321	116			
100bytes	send	WEBAPI	non-persistent		279	170		
5KB		send		WEBAPI	nonpersistent		279	5070
15kB		send		WEBAPI	nonpersistent		279	15070
32kB	send	WEBAPI	non-persistent		279	32070		
33KB	send	WEBAPI	non-persistent		279	33070		
50kB	send	WEBAPI	non-persistent		279	50070		
100bytes		receive	WEBAPI	non-persistent		421	116	
5KB		recdve		WEBAPI	non-persistent		5321	116
15KB		recdve		WEBAPI	non-persistent		15321	116
32kB	receive	WEBAPI	non-persistent		32321	116		
33KB	receive	WEBAPI	non-persistent		33321	116		
50KB	receive	WEBAPI	non-persistent		50321	116		
5KkB	send	COMMAREA	persisent		284	5050		
5KB		recdve		COMMAREA	persistent		5323	153

The following data, presented in Table 35 on page 174 through Table 58 on page 180 , shows the results

for a CWS direct connection with Web-aware presentation logic using the CICS WEB API. Throughput
is defined as Web requests per second. 200 simulated Web browser clients were in use for all tests.

Table 35: CWS direct connection, persistent HTTP connection, 100 byte send

[Throughput|[CICS CPU%|VTAM CPU%|[TCP/IP CPU%|[Total CPU%|(CPU ms/request|
1965		730	o057	1.25	136	6.9		
3946		1336	065	1.69	192	4.9		
6539	2025	08	2.30	268	41			
9755		2938		116		2.90	367	3.8
18940		5302		144	454	621	3.3	

Table 36: CWS direct connection, persistent HT TP connection, 5KB send
[r r r T r

[Throughput||ClCS CPU%|[VTAM CPU%||[TCP/IP CPU%|[Total CPU%||[CPU ms/request|

1963		811		o057	142		1340		7.1
3957		1440		o076	217		209	5.3	
6545		2229		108	2.88	296	45		
9749		3155		127	390		400	41	
18930	5798	176		5.71	689	3.6			

Table 37: CWS direct connection, persistent HTTP connection, 15KB send

[Throughput|[CICS CPU%|VTAM CPU%|[TCP/IP CPU%|[Total CPU%|(CPU ms/request|

1967		1535	069	2.66	154	7.8		
30945		2360	o087	2.73	236	6.0		
6533	3395	129	3.76	340	5.2			
o758		4665	170		4.98	467	48	
18090		8115		261	760		812	43

Table 38: CWS direct connection, persistent HT TP connection, 32KB send

[Throughput|[CICS CPU%|[VTAM CPU% |[TCP/IP CPU%|[Total CPU%|[CPU ms/request|

1960	1095	092	2.38	180	9.2			
3949		2005	144	384		287	7.3	
6515		3125		206	527		419	6.4
9740		4548		255	654		579	5.9
17880		7724		95	1526	1053	5.9	

Table 39: CWS direct connection, persistent HT TP connection, 33KB send

[Throughput|[CICS CPU%|VTAM CPU%|[TCP/IP CPU%|[Total CPU%|[CPU ms/request|

19053		1116		o093	239		178	9.1
3951		2047		144	3.83	295	75	
6500	3197	194	5.25	423	6.5			
o708	4615	255	6.86	586	6.0			
17390		7766	960		1579	1049		6.0

Table 40: CWS direct connection, persistent HT TP connection, 50KB send

[Throughput||CICS CPU%|[VTAM CPU% |[TCP/IP CPU%|Total CPU%|[CPU ms/request|

1961		1302		115	2.68	203	10.4		
3938		2390		176	445	335	8.5		
6509	3769	268	7.05	506	7.8				
9722		55207		403		1264		719	7.4
11610		6285	1040		1437	9.9	7.8		

Table 41: CWS direct connection, persistent HT TP connection,

100 byte receive

[Throughput||ClCS CPU%|[VTAM CPU%||[TCP/IP CPU%|[Total CPU%||[CPU ms/request|

1966		793		o057	113		145		7.3
3942		1440		o076	1.78	212	5.4		
6531		2237		09	2.28	291	45		
9747		3220		127	288		398	41	
18950	5999	165	4.39	696	3.7				

Table 42: CWS direct connection, persistent HT TP connection, 5K B receive

[Throughput|[CICS CPU%|VTAM CPU%|[TCP/IP CPU%|[Total CPU%|(CPU ms/request|

1962		1115	093	2.39	181	9.2		
3984		20112		120	3.49	283	7.1	
6539		3145		149	494	411	6.3	
9727		4505		18	656		570	5.9
18090		8305		215	957		980	5.2

Table 43: CWS direct connection, persistent HT TP connection, 15K B receive

[Throughput|[CICS CPU%|[VTAM CPU% |[TCP/IP CPU%|[Total CPU%|[CPU ms/request|

1965	1571		111	3.59	240	12.2		
4007		2964		172	5.97	406	10.1	
6539		4621		221	8.62	603	9.2	
9704		es76		271	1148		832	8.6
18900		11504		265	1598	1370	7.2	

Table 44: CWS direct connection, persistent HT TP connection, 32KB receive

[Throughput|[CICS CPU%|VTAM CPU%|[TCP/IP CPU%|[Total CPU%|[CPU ms/request|

1964		2208		152	539		333	17.0
30972		405	254	9.50	594	15.0		
6546		7010		290		1387	9.2	13.8
9701		9832		307		1799	1226	12.6
13580		12855		391		2216	1580	11.6

Table 45: CWS direct connection, persistent HT TP connection, 33KB receive

[Throughput||CICS CPU%|[VTAM CPU% |[TCP/IP CPU%|Total CPU%|[CPU ms/request|

1973		2394		152	5.61	345	17.5	
3095		4636		276	994		622	15.6
6522		7296		333		1459	941	14.4
9682	10247		254		1827	1266		13.1
13010		13105		444	2239	1613	12.4	

Table 46: CWS direct connection, persistent HT TP connection, 50K B receive

[Throughput||ClCS CPU%|[VTAM CPU%||[TCP/IP CPU%|[Total CPU%||[CPU ms/request|

1973		2698		18	703		392	19.9
3976		5222		328	1256	715	18.0	
6531		88		44	1901	1006	16.8	
9465		11531		263		2390	1450	15.3

Table 47: CWS direct connection, non-persistent HT TP connection, 100 byte send

[Throughput|[CICS CPU%|[VTAM CPU% |[TCP/IP CPU%|[Total CPU%|[CPU ms/request|

196	1780	o081	2.56	178	9.1			
3934		1898	134	4.83	284	7.2		
6534		2974		208	6.37	416	6.4	
9753		4218		225	855		564	5.8
18050		7666	283		1305	958	5.1	

Table 48: CWS direct connection, non-persistent HTTP connection, 5KB send

[Throughput|[CICS CPU%|VTAM CPU%|[TCP/IP CPU%|[Total CPU%|[CPU ms/request|

19052		108	o093	320		186	95
3954	1966	145		5.43	302	7.6	
6519		3071	230	8.05	444	6.8	
9762		4366		224	1019	596	6.1
18960		850	314		1580	1029	5.4

Table 49: CWS direct connection, non-persistent HT TP connection, 15KB send

[Throughput|[CICS CPU%|VTAM CPU%|[TCP/IP CPU%|[Total CPU%|[CPU ms/request|

1934		1147		117	443		209	10.8
3947		2125		214	772		346	8.8
6488	3312	306		1112	507	7.8		
9775		4805		289		1398	683	7.0
18990		8850	410		2080	1169		6.2

Table 50: CWS direct connection, non-persistent HT TP connection, 32KB send

[Throughput|[CICS CPU%|VTAM CPU%|[TCP/IP CPU%|[Total CPU%|[CPU ms/request|

1930		1282		151	6.03	240	12.4		
3944		2405		279	1034	406	10.3		
648		379		392	1478	509	9.2		
9719		431		306		1759		790	8.1
16480	8591	832		2204	1208	7.3			

Table 51. CWS direct connection, non-persistent HTTP connection, 33KB send

[Throughput|[CICS CPU%|VTAM CPU%|[TCP/IP CPU%|[Total CPU%|[CPU ms/request|

1932 | 1301 | 150 || 601 || 242 | 125

| |
3957		2464		279	1058	415	10.5
6498	3855	369		148	605	9.3	
9741		5557		328	1816	804	8.3
16220		880		755	2150	1193	7.4

Table 52: CWS direct connection, non-persistent HT TP connection, 50K B send

[Throughput|[CICS CPU%|[VTAM CPU% |[TCP/IP CPU%|[Total CPU%|[CPU ms/request|

1932		1439	195	7.32	272	14.1		
3942		2708		307		1240	462	11.7
6532		4273		308	1663	659	10.1	
9750		6225		48		1999	905	9.3

Table 53: CWS direct connection, non-persistent HTTP connection, 100 byte receive

[Throughput|[CICS CPU%|VTAM CPU%|[TCP/IP CPU%|[Total CPU%|[CPU ms/request|

1964		1106		o8	253		183	9.3	
3932		2014		133	434	302	7.6		
6515		3133	207	6.45	432	6.6			
9747		448	246	8.62	593	6.1			
18950		8236		39		1385	1034		5.5

Table 54: CWS direct connection, non-persistent HT TP connection, 5KB receive

[Throughput|[CICS CPU%|VTAM CPU%|[TCP/IP CPU%|[Total CPU%|[CPU ms/request|

1947		1373		102	3.56	220	11.3	
3949		2540	187	6.09	368	9.3		
6514		4003		292	911		556	8.5
9734		5699	3017		1164	70	7.7	
19000		10529	345		1832	1304		6.9

Table 55: CWS direct connection, non-persistent HTTP connection, 15K B receive

[Throughput|[CICS CPU%|VTAM CPU%|[TCP/IP CPU%|[Total CPU%|[CPU ms/request|

1932		1852	133	508		285	14.7
3946	3508	249	8.60	495	12.5		
6491		5542		373	1240	749	11.5
o755		824		346	1620	1034	10.6
18990	14730	318		2452	1784	9.4	

Table 56: CWS direct connection, non-persistent HTTP connection, 32K B receive

[Throughput|[CICS CPU%|VTAM CPU%|[TCP/IP CPU%|[Total CPU%|[CPU ms/request|
| 1949 || 2637 | 173 || 6.59 | 381 | 19.5 |

3953		5039	307		1100		679	17.2
5440		7979		268	1576	1015	15.5	
9751		11703		245	2117		1440	14.8
12610		15022		231		2533	1817	14.4

Table 57: CWS direct connection, non-persistent HTTP connection, 33KB receive

[Throughput|[CICS CPU%|VTAM CPU%|[TCP/IP CPU%|[Total CPU%|[CPU ms/request|

1956		2737	1713	670		392	20.0	
3946		5232		296		1119	697	17.7
6544		8305	246		1586	1049		16.0
9714		12323		298	2217	1519	15.6	
11900		15291		55	2677	1190	15.9	

Table 58: CWS direct connection, non-persistent HT TP connection, 50K B receive

[Throughput|[CICS CPU%|VTAM CPU%|[TCP/IP CPU%|[Total CPU%|[CPU ms/request|

1978		2990	205	799		433		21.9	
3954		5735		338	138		779	19.7	
6517		9054		213		1952	1155		17.7
9555		13639	245		2700	1694		17.7	

The datain Table 59 and Table 60 is from tests that used the COMMAREA manipulation technique

instead of the WEB API in the Web-aware presentation logic. Both tests used a persistent HTTP

connection, and 200 simulated Web browser clients.

Table 59: CWS direct connection, COMMAREA manipulation, 5KB send

[Throughput|[CICS CPU%|VTAM CPU%|[TCP/IP CPU%|[Total CPU%|[CPU ms/request|

1966		960	094	1.89	170	8.7		
3936		1637		124	2.75	249	6.3	
6518	2501		167	3.98	345	5.3		
o770		3517		219	511		463	A7
18930	6273	343	7.88	777	4.1			

Table 60: CWS direct connection, COMMAREA manipulation, 5KB receive

[Throughput|[CICS CPU%|VTAM CPU%|[TCP/IP CPU%|[Total CPU%|(CPU ms/request|

1088	1148	125	3.01	200	10.0			
3994		1997	166	4.61	300	75		
6549		3025		15	600		417	6.4
9744		4322		255	811		574	5.9
19090		810		38	1200	9.7	5.2	

B.3.2 CWSand the CICS WebServer Plugin

Table 61 details the actual HTTP data stream sizes sent and received by CICS Web support in our test
measurements with the CICS WebServer Plugin. Send data tests were implemented using the HTTP
GET method, and receive data tests implemented using the HTTP POST method.

Table 61: CWS and WebServer Plugin, data transmission sizes

Nominal ||Send/receivell Application || Persistent HTTP || Datareceived by Data sent
data size style connections CICS (bytes) CICS (bytes)
100bytes		send		WEBAPI		persisent		293	194
B5KB		send		WEBAPI		persisent		293	5004
15kB		send	WEBAP	persistent	293	15094			
3kB		snd	WEBAP	persistent	293	32094			
100bytes	receive		WEBAPI		persisent		430	116	
5KB		recdve	WEBAPI	persistent	5330	116			
15KB		receive		WEBAPI		persisent		15330	116
32KB		receive		WEBAPI		persisent		32330	116
100bytes		send		WEBAPI		nonpersistent	l 288	194	
5KB		send	WEBAP	non-persistent	288	5004			
15kB		send	WEBAP	non-persistent	288	15094			
3KB	snd	WEBAP	non-persistent	288	32004				

The following data, presented in Table 62 on page 182 through Table 73 on page 185 , shows the results
for the CWS tests using the CICS WebServer Plugin, with Web-aware presentation logic using the CICS
WEB API. Throughput is defined as Web requests per second. For all tests 70 simulated Web browser

clientswerein use.

Table 62: WebServer Plugin, persistent HT TP connection, 100 bytes send

Throughput| CICS Web Server VTAM TCP/IP Total CPU
CPU% CPU% CPU% CPU% CPU% | ms/request

| 1363 || 333 | 108 || 013 | 08 | 196 | 144 |

| 1692 || 404 || 1263 || o013 | o091 || 220 | 130 |

| 1949 || 457 | 1434 || 025 || 102 | 245 || 126 |

| 3251 || 715 | 2252 || 03 || 143 | 35 | 109 |

| 6047 || 1238 || 3702 || o068 | 216 | 561 | 9.3 |

Table 63: WebServer Plugin, persistent HT TP connection, 5KB send

Throughput| CICS Web Server VTAM TCP/IP Total CPU
CPU% CPU% CPU% CPU% CPU% | ms/request

| 1320 || 358 | 1047 || o027 | 093 | 198 | 150 |

| | | | | | | |

1644	427	1231	o026		104	223		135		
2119		539	1529		038	135		265	125	
309		744		2099		o048	156		346	112
5649	1285	38		o091	25	600	9.9			
Table 64: WebServer Plugin, persistent HT TP connection, 15KB send										
Throughput	CICS Web Server VTAM TCP/IP Total CPU									
CPU% CPU% CPU% CPU% CPU%	ms/request									
1360		434	1341		03	115	235	173		
1681		508	1574		o050	124		267	159	
2216		649		2044		o072	15		3383	150
3227		902	2787		o093	197		40	136	
6007		1600		4770		177		311		726
Table 65: WebServer Plugin, persistent HT TP connection, 32KB send										
Throughput	CICS Web Server VTAM TCP/IP Total CPU									
CPU% CPU% CPU% CPU% CPU%	ms/request									
1358		545		1634		o062	149		281	2.1
1678		651	1942		o072	169	325	1.9		
2205		844		2498		117		223	407	1.8
3200		117		3465		148	284	547	1.7	
5952		2107	6014		274	461	924	1.6		
Table 66. WebServer Plugin, persistent HT TP connection, 100 byte receive										
Throughput	CICS Web Server VTAM TCP/IP Total CPU									
CPU% CPU CPU% CPU% CPU%	msrequest									
1721		468		1200		os51	101		237	137
2208		597		165	o061	122		287	125	
3418		843	2331		o070		152		383	112
6663	1543	4047		112		235		635	9.5	
24190		5843	15352		150		599	2241	9.3	
Table 67: WebServer Plugin, persistent HT TP connection, 5KB receive										
Throughput	CICS Web Server VTAM TCP/IP Total CPU									
CPU% CPU% CPU% CPU% CPU%	ms/request									
1728		48	1228		o075	18	243		141	
2314		617	1610		073		218	207		128
3418		88	2277		093	279	395	116		
6652		1661	4131		133	443		680	102	
22420		5915	17938		169	1569		2606	116	

Table 68: WebServer Plugin,

persistent HT TP connection, 15K B receive

Throughput| CICS Web Server VTAM TCP/IP Total CPU
CPU% CPU% CPU% CPU% CPU% | ms/request

| 1728 || 552 | 1764 || 08 | 312 | 312 || 181 |

| 2312 || 707 || 2295 || 093 | 394 || 393 | 170 |

| 3414 || 1023 || 3283 || 112 | 58 || 52 | 159 |

| 6667 || 1935 | 5861 || 162 | 1287 || 95 | 145 |

| 17520 || 5606 | 19324 || 346 | 9408 || 3516 | 201 |

Table 69: WebServer Plugin, persistent HT TP connection, 32K B receive

Throughput| CICS Web Server VTAM TCP/IP Total CPU
CPU% CPU% CPU% CPU% CPU% | ms/request

| 1715 || 713 || 2587 || 103 | 58 || 42 | 257 |

| 2298 || 933 || 3441 || 13 | 843 || 587 | 255 |

| 3349 || 1327 || 4879 || 164 | 1393 || 818 | 242 |

| 6660 | 2645 || 9440 || 235 || 4447 | 1721 || 258 |

| 10030 | 4291 || 15377 || 275 | 12904 | 3330 | 332 |

Table 70: WebServer Plugin, non-persistent HT TP connection, 100 byte send

Throughput| CICS Web Server VTAM TCP/IP Total CPU
CPU% CPU% CPU% CPU% CPU% | ms/request

| 1357 || 327 || 1229 || o7 | 183 || 228 | 168 |

| 1688 || 39 | 1442 || o8 | 204 || 257 | 152 |

| 2213 || 504 | 1844 || o098 | 271 | 316 | 143 |

| 3244 || 707 | 2535 || 141 | 354 | 415 || 128 |

| 6006 || 1239 | 4347 || 225 || 58 || 679 | 113 |

Table 71: WebServer Plugin, non-persistent HT TP connection, 5KB send

Throughput| CICS Web Server VTAM TCP/IP Total CPU
CPU% CPU% CPU% CPU% CPU% | ms/request

| 1351 || 360 | 1311 || o051 | 180 || 234 || 173 |

| 1672 || 437 | 1536 || 050 | 200 | 266 | 159 |

| 2212 || 55 | 2003 || 072 | 265 | 333 | 151 |

| 3218 || 779 || 2745 || 116 | 361 || 439 | 136 |

| 598 || 138 | 4717 || 190 | 570 || 726 | 121 |

Table 72: WebServer Plugin, non-persistent HT TP connection, 15KB send

Throughput| CICS Web Server VTAM TCP/IP Total CPU
CPU% CPU% CPU% CPU% CPU% | ms/request

| 1357 || 427 | 1432 || 063 | 226 | 258 || 190

| 1681 || 514 || 1727 || o073 | 269 || 300 | 178

[1 1 1 I 1 1

| 2207 | 654 || 2166 | o095 || 333 | 37 | 166

| 3223 || 918 || 2994 || 138 | 459 | 491 | 152

| 5937 || 1623 | 5178 || 254 | 740 || 8.7 | 138

Table 73: WebServer Plugin, non-persistent HT TP connection, 32KB send

Throughput| CICS Web Server VTAM TCP/IP Total CPU
CPU% CPU% CPU% CPU% CPU% | ms/request

| 1351 || 53 | 1692 || 110 || 292 | 308 | 228 |

| 1680 || 655 | 1977 || 119 | 333 | 33 | 210 |

| 2199 || 837 || 2582 || 151 | 442 || 46 | 203 |

| 3207 || 1273 || 3587 || 203 | 609 | 599 | 187 |

| 5857 || 2079 || 6150 || 274 | 952 || 987 | 169 |

B.4 CWSwith SSL

In this section we present the results of our tests using SSL with CICS Web support and new HTTP
based Web-aware presentation logic, using both a direct connection to CWS and the CICS WebServer
Plugin. For further discussion of this data refer to Chapter 6 , "SSL with CWS" on page 85 .

The measurements were generated using HTTP GET requests and a simple CICS WEB API program
that sent the requested amount of data. The SSL handshake measurements used non-persistent HTTP
connections and the CICS application returned 1 byte of data. The SSL data transmission measurements
used persistent HT TP connection and thus incurred no SSL handshake costs. 70 Web browser clients
werein usefor all tests.

Table 74 and Table 75 detail the actual HTTP data stream sizes sent and received in the CWS SSL test
measurements.

Table 74: Data transmission sizes, CWS direct connection
INominal data sizel|Data received by CICS (bytes)|[Data sent from CICS (bytes)|

lbytes		284	95
8KB	284	8095	
16K B	284	16095	

Table 75: Data transmission sizes, WebServer Plugin
|Nomina| data size||Data received by CICS (bytes)||Data sent from CICS (bytes)|

1 byte	293	95
8KB	293	8095
16K B	293	16095

B.4.1 SSL handshakeswith a CW S direction connection

The following data, presented in Table 76 on page 187 through Table 99 on page 194 , shows the results
for the SSL handshake tests with a CWS direct connection. All the handshake tests used non-persi stent
HTTP connections and sent 1 byte of data from the CICS application. The resultsin Table 79 and Table
80 on page 188 marked with crypto used the $/390 Cryptographic Coprocessor to assist in the CPU costs
of SSL handshaking. The Non-SSL figures are the cost of establishing a non-persistent HTTP
connection.

Table 76: Non-SSL, non-persistent HT TP connection, CWS direct connection
[Throughput|[CICS CPU%|VTAM CPU%|[TCP/IP CPU%|[Total CPU%|(CPU ms/request|

1357		679		o067	1.73	169	12.5	
16903		841		o7	210		187	11.0
2223		1054		o8	254		219	9.9
3247		1479	122	354		273	8.4	
6073		2577		200	5.80	404	6.7	

Table 77: SSL full handshake, 1024-hit key, CWS direct connection

[Throughput|[CICS CPU%|VTAM CPU%|[TCP/IP CPU%|[Total CPU%|[CPU ms/request|

1297		12702	083	2.18	1364	1052		
1576		15315	093		248	1630		92.6
2029		19641		113	3.08	2070	102	
2852		27569		153	4.29	2879	1009	
4358		41919		234	621		4343	99.7

Table 78: SSL full handshake, 512-bit key, CWS direct connection

[Throughput|[CICS CPU%|VTAM CPU%|[TCP/IP CPU%|[Total CPU%|[CPU ms/request|

1320		389	08	2.21	487	36.9		
1627		476		o098	251		578	35.5
2138		6133		129	333		725	33.9
3087		8735		180	444	1002	325	
5055		14715		272	6.80	1630	32.2	

Table 79: SSL full handshake with crypto, 1024-bit key, CWS direct connection

[Throughput|[CICS CPU%|[VTAM CPU% |TCP/IP CPU%|[Total CPU%|[CPU ms/request|

1204		1942	468	2.40	341	26.4	
1590		2459	471	2.71	397	25.0	
209	3016	497	358		465	22.2	
2981		4201	542	463		599	20.1
5066	7286	646	6.46	939	185		

Table 80: SSL full handshake with crypto, 512-bit key, CWS direct connection

IThroughput|[CICS CPU%|VTAM CPU%|[TCP/IP CPU%|[Total CPU%|[CPU ms/request|

13010 || 1949 | 466 || 227 || 340 | 26.1

| |
1612	2368	4.59	2.59	384	23.8			
212	3059	4.85	3.46	464	21.9			
3045	4260	5.40	4.72	603	19.8			
5187		7521		645	656		962	18.5

Table 81: SSL null handshake, 1024-bit key, CWS direct connection
[Throughput|[CICS CPU%|[VTAM CPU% |[TCP/IP CPU%|[Total CPU%|[CPU ms/request|

1290		1217	o091	2.35	208	16.1	
1596	1450	102	2.67	234	14.7		
2057		1818	135	344		280	13.6
2007		2466		178	4.50	358	12.3
4916		3948		227	6.37	525	10.7

Table 82: SSL null handshake, 512-hit key, CWS direct connection
[Throughput|[CICS CPU%|VTAM CPU%|[TCP/IP CPU%|[Total CPU%|[CPU ms/request|

1200		1200		o091	247		208	16.1
1582		1451	102	2.67	233	14.7		
2048		1808	135	344		278	13.6	
2007		2470		1718	451	358	12.3	
4932		3969	227	6.37	530	10.7		

The following measurements marked client certs used SSL client certificates in addition to server
certificates.

Table 83: SSL full handshake, 1024-hit key, client certs, CWS direct connection
[Throughput|[CICS CPU%|VTAM CPU%|[TCP/IP CPU%|[Total CPU%|[CPU ms/request|

1247		24398	123		3.48	2556	2050	
1504		30671		153	4.29	3188	2120	
1893	3893	183	5.19	4034	2131			
2365		48163		234	661		4977	2104
2399		48309		234	693		5000	2084

Table 84: SSL full handshake with crypto, 1024-bit key, client certs, CWS direct connection
[Throughput|[CICS CPU%|VTAM CPU%|[TCP/IP CPU%|[Total CPU%|(CPU ms/request|

| 1308 || 1977 || 437 | 2.40 | 348 | 26.6
1626 || 2381 | 434 | 2.83 | 396 | 24.4

3051 | 4295 || 449 | 4.73 | 616 | 20.1

|
| |
| 2121 || 3058 || 426 | 3.59 | 472 | 22.2 |
| |
| |

| 4827 | 6814 | 455 | 627 || 80 | 184 |

B.4.2 SSL data transmission with a CW S direction connection

The following data, presented in Table 88 on page 191 through Table 99 on page 194 , shows the results
for the SSL data transmission tests with a CWS direct connection. All the data transmission tests used
persistent HTTP connections. The results shown in Table 97 on page 194 through Table 99 on page 194
marked with crypto used the S/390 Cryptographic Coprocessor; the non-SSL figuresin Table 85
through Table 87 are given for comparison.

Table 85: Non-SSL 1 byte transmission, CWS direct connection
[Throughput|[CICS CPU%|[VTAM CPU% |TCP/IP CPU%|[Total CPU%|[CPU ms/request|

1357		462		028	0.70	146	10.8
1689		566	028	0.83	156	9.2	
224		722		o040	1.07	173	7.8
3265	1006	052	1.29	200	6.1		
6100		1737		o073	1.82	2745	45

Table 86: Non-SSL 8K B transmission, CWS direct connection
IThroughput|[CICS CPU%|VTAM CPU%|[TCP/IP CPU%|[Total CPU%|[CPU ms/request|

1358		53¢		o026	110		1575		11.6
1695		658	039	134		1705		10.1	
224		839	o050	1.70	190	8.5			
3254		1166		o060	213		227	7.0	
608		2021		103	345		3245	5.3	

Table 87: Non-SSL 16K B transmission, CWS direct connection
[Throughput|[CICS CPU%|VTAM CPU%|[TCP/IP CPU%|[Total CPU%|[CPU ms/request|

1362		607		o038	148		166	12.2
1686		739		o037	158		180	10.7
2225		963	060	2.18	206	9.3		
3248		1323	08	284		249	7.7	
6050		2328		122	445	365	6.0	

Table 88: SSL 1 byte transmission, RC4-MD5(40 hit), CWS direct connection
[Throughput|[CICS CPU%|VTAM CPU%|[TCP/IP CPU%|[Total CPU%|[CPU ms/request|

| 1360 || 628 || o028 | 08 || 161 | 11.8
1685 || 732 || o027 | 0.81 | 168 | 10.0

262 || 1292 || o038 | 1.27 | 226 | 6.9

|
| |
| 2227 || 919 | 0.26 | 1.05 | 189 | 8.5 |
| |
| |

| 6093 | 2235 | o7 || 190 || 325 | 5.3 |

Table 89: SSL 8KB transmission, RC4-MD5(40 hit), CWS direct connection

[Throughput|[CICS CPU%|VTAM CPU%|[TCP/IP CPU%|[Total CPU%|[CPU ms/request|

1359		910		o026	119		189	13.9
1690		1069	039	129		204	12.0	
2221		1380		o050	1.62	238	10.7	
3251		1899		o060	216		205	9.1
6057	3362	114	3.42	453	75			

Table 90: SSL 16K B transmission, RC4 -MD5(40 hit), CWS direct connection

[Throughput|[CICS CPU%|VTAM CPU%|[TCP/IP CPU%|[Total CPU%|(CPU ms/request|

1359		1175	038	1.40	215	15.8			
1684		1408		o050	162		238		14.1
2217		1815		o060	204		283	12.8	
3220		2492		o8	2.79	358	11.1		
6013		400		122	433		s67	9.4	

Table 91: SSL1 byte transmission, RC4-MD5(128 bit), CWS direct connection

[Throughput|[CICS CPU%|VTAM CPU%|[TCP/IP CPU%|[Total CPU%|(CPU ms/request|

1367		619	041	0.83	165	12.0			
1686	728	040	0.81	174	10.3				
2223		933		039	105		195	8.8	
325		1306		o051	127		232		7.1
609		2258		o711	190		332	5.4	

Table 92: SSL 8KB transmission, RC4-MD5(128 bit), CWS direct connection

[Throughput||CICS CPU%|[VTAM CPU% |[TCP/IP CPU%|[Total CPU%|[CPU ms/request|

1356		910	026	1.19	190	14.0		
1685	1070	039	1.29	205	12.2			
224		1364	050	1.63	237	10.7		
3252		1914		o060	2.17	295	9.1	
6062		3361		103	342		454	75

Table 93: SSL 16KB transmission, RC4 -MD5(128 bit), CWS direct connection

[Throughput|[CICS CPU%|VTAM CPU%|[TCP/IP CPU%|[Total CPU%|[CPU ms/request|

| 1358 || 1169 | 038 | 140 || 219 | 16.1
16.80 || 1393 | 037 | 1.62 | 238 | 14.1

3228 || 2494 || o082 | 2.68 | 359 | 11.1

|
| |
| 221 || 1785 | 0.60 | 2.05 | 284 | 12.8 |
| |

| 6017 | 4392 | 122 || 433 || 575 | 95 |

Table 94: SSL 1 byte transmission, triple DES, CWS direct connection

[Throughput|[CICS CPU%|VTAM CPU%|[TCP/IP CPU%|[Total CPU%|[CPU ms/request|

1359		760		o027	081		171	12.6	
1691		88		o026	079		182	10.8	
2219		1126		o026	102		206	9.3	
3248		1572		o037	124		250		7.7
6103		2751	o070	1.86	372	6.1			

Table 95: SSL 8KB transmission, triple DES, CWS direct connection

[Throughput|[CICS CPU%|VTAM CPU%|[TCP/IP CPU%|[Total CPU%|(CPU ms/request|

1349		2502	035	104		332	24.6	
1672		3017		034	1.13	383	22.9	
2200		3865	044	144		472	21.4	
3213		5548		o065	194		641	19.9
5941		10044		106	327		1110	18.7

Table 96: SSL 16K B transmission, triple DES, CWS direct connection

[Throughput|[CICS CPU%|VTAM CPU%|[TCP/IP CPU%|[Total CPU%|(CPU ms/request|

1347		4157	033	1.21	504	37.4	
1662	5038	043		1.41	593	35.6	
2187		6503		053	1.71	742	33.9
3182		938	o074	253		1040	32.7
569	16492		103	362		1764	310

Table 97: SSL 1 byte transmission, triple DES with crypto, CWS direct connection

[Throughput||CICS CPU%|[VTAM CPU% |[TCP/IP CPU%|[Total CPU%|[CPU ms/request|

1363		78	041	0.81	176	12.9			
1692		922	0.4	094		187	11.1		
2217		1145	o051	1.03	211	9.5			
3251		1614		o062	124		257		7.9
6067		2801		o8	1.87	381	6.3		

Table 98: SSL 8KB transmission, triple DES with crypto, CWS direct connection

[Throughput|[CICS CPU%|VTAM CPU%|[TCP/IP CPU%|[Total CPU%|[CPU ms/request|

| 1354 || 1578 | 049 | 111 || 252 | 18.6
1682 || 1885 | 048 | 1.32 | 281 | 16.7

224 || 3862 || 079 | 2.15 | 437 | 13.6

|
| |
| 2207 || 2394 | 0.59 | 1.64 | 335 | 15.2 |
| |

| 5926

59.35

1.20

3.48

| 710

12.0

Table 99: SSL 16K B transmission, triple DES with crypto, CWS direct connection

[Throughput|[CICS CPU%|VTAM CPU%|[TCP/IP CPU%|[Total CPU%|[CPU ms/request|

1348		29%	03	1.29	3175	23.6		
1669		2759		046	149		364	21.8
2196		336		05	190		447	20.3
319		5002		o8	251		601	18.8
5804	9016	117	3.95	1020	17.6			

B.4.3 SSL handshakeswith the CICS WebServer Plugin

The following data, presented in Table 100 on page 195 through Table 103 on page 196 , shows the

results for the SSL handshake tests with CWS and the CICS WebServer Plugin. All the handshake tests

used non-persistent HT TP connections and sent 1 byte of data from the CICS application.

Table 100: SSL full handshake, 1024 bit key, WebServer Plugin

Throughput| CICS Web server VTAM TCP/IP Total CPU
CPU% CPU% CPU% CPU% CPU% | mslrequest

| 1262 || 251 | 15428 || o098 || 273 | 17120 | 1355 |

| 1528 || 309 | 19539 || 121 || 331 | 2143 | 1402 |

| 1900 || 414 || 25973 || 157 || 425 || 2812 | 1480 |

| 215 || 501 | 32000 | 18 || 512 || 3441 | 1600 |

| 2144 || 500 | 31952 | 193 || 512 || 3439 | 1604 |

Table 101: SSL full handshake, 512-hit key, WebServer Plugin

Throughput| CICS Web server VTAM TCP/IP Total CPU
CPU% CPU% CPU% CPU% CPU% | mslrequest

| 1262 || 262 | 598 || 114 || 28 | 768 | 608 |

| 1546 || 328 | 8116 || 129 || 340 | 1007 || 658 |

| 1990 || 448 || 11733 | 170 || 436 || 1400 | 704 |

| 265 || 645 | 18333 | 211 || 59 || 2106 | 795 |

| 2778 || 716 | 20896 || 251 || 678 | 2399 | 8.3 |

Table 102: SSL null handshake, 1024-bit key, WebServer Plugin

Throughput| CICS Web server VTAM TCP/IP Total CPU
CPU% CPU% CPU% CPU% CPU% | mslrequest

| 1257 || 263 || 1829 | 09 || 251 || 35 | 282 |

| 1535 || 316 | 2192 | 105 || 305 || 406 | 264 |

| 1963 || 406 | 2832 | 139 || 371 || 488 | 249 |

| 299 || 550 | 342 || 172 || 48 | 628 | 210 |

2287 || 887 || 6599 | 262 || 728 | 93 | 225

Table 103: SSL null handshake, 512-bit key, WebServer Plugin

Throughput| CICS Web server VTAM TCP/IP Total CPU
CPU% CPU% CPU% CPU% CPU% || msrequest

| 1268 || 262 || 1836 || o095 || 262 || 37 | 282 |

| 1542 || 318 || 2235 | 118 || 306 || 411 | 267 |

| 1967 || 406 | 2830 | 139 || 371 || 490 | 249 |

| 2688 || 540 | 3955 | 172 || 471 || 630 | 234 |

| 4278 || 88 | 6647 || 252 || 722 | 970 | 227 |

B.4.4 SSL data transmission with the CICS WebServer Plugin

The following data, presented in Table 104 through Table 106, shows the results for the SSL data
transmission tests with CWS and the CICS WebServer Plugin. All the data transmission tests used
persistent HT TP connections.

Table 104: SSL 1 byte transmission, RC4-MD5(40 bit), WebServer Plugin

Throughput| CICS Web server VTAM TCP/IP Total CPU
CPU% CPU% CPU% CPU% CPU% | mslrequest
1362		328	1098		416		o7	270	198	
1686	397	184	410		o087		301	179		
2221	519	1737	410		109		34	159		
3255		714		2388		410		714	439	135
6033		1262	4045		439		214	e67	111	
Table 105: SSL 8KB transmission, RC4-MD5(40 bit), CWS direct connection										
Throughput	CICS Web server VTAM TCP/IP Total CPU									
CPU% CPU% CPU% CPU% CPU%	msrequest									
1361		38	1497	405		08		313	230	
1685		45		1826	408		108		36	211
2215		58	2315		423		129	420	190	
3223		823	3200	434		160	533	165		
5934	1431	5568	48		255		844	142		

Table 106: SSL 16KB transmission, RC4 -MD5(40 bit), CWS direct connection

Throughput CICS Web VTAM TCP/IP Total CPU
CPU% server CPU% CPU% CPU% ms/r equest
1352 || 406 || 1840 || 406 || 108 | 3525 | 26.1

|

| 1681 || 505 || 2245 | 411 || 118 || 402 | 23.9
| 2208 || 655 || 2883 | 425 || 149 | 4835 | 21.9
[1l 1l

| 3227

9.19

| 4034 |

3.59

1.90

| 6185

192 |

| 5958

16.24

71.06 ||

2.62

3.05

| 994

16.7 |

B.5 CICS Transaction Gateway

In this section we present the results of our tests using the 0S/390 CICS Transaction Gateway (CTG),
first using a Java applets and then using Java servlets. For further discussion of this data refer to Chapter
7,"TheOS/390 CTG" on page 103 .

B.5.1 CTG Java applets.

The following data, presented in Table 107 on page 198 through Table 114 on page 201 , shows the
results for CTG Java applets. Throughput is defined as ECI requests per second. For the tests with the
TCP/IP protocol 500 clients were used and for the tests with the HTTP protocol 100 clients were used.

The measurementsin Table 107 were performed using a TCP/IP connection from the applet to the CTG
Java gateway application that was not re-used.

Table 107: Applets, TCP/IP, no connection re-use, COMMAREA 100 bytes

Throughput CICS CTG VTAM TCP/IP Total CPU
CPU% CPU% CPU% CPU% CPU% ms/request

| 5280 || 79 || 80 | 28 | 79 || 1236 || 234 |

| 6192 | 94 | 1045 || 33 | 93 || 1443 | 2330 |

| 6951 || 107 || 1220 || 36 | 103 | 1668 | 24.0 |

| 7655 || 118 || 1366 || 40 || 113 || 1850 || 242 |

| 9093 || 143 || 1673 || 49 || 140 || 2257 | 248 |

The following measurements in Table 108 on page 199 through Table 113 on page 200 re-used the
TCP/IP connection across ECI calls. The figures are for arange of COMMAREA sizes from 100 bytes

to 16,000 bytes.

Table 108: Applets, TCP/IP connection, COMMAREA 100 bytes

Throughput CICS CTG VTAM TCP/IP Total CPU
CPU% CPU% CPU% CPU% CPU% ms/request

| 3253 | 45 || 266 || 05 | 1.3 || 419 | 12.9 |

| 4928 | 68 | 394 || o8 | 18 || 583 | 11.8 |

| 6579 || 91 || 548 | 10 | 24 || 776 | 11.8 |

| 9855 || 137 || 83 || 14 || 35 | 1129 | 115 |

| 1330 || 199 | 1350 || 18 || 49 | 187 | 140 |

Table 109: Applets, TCP/IP connection, COMMAREA 1000 bytes

Throughput CICS CTG VTAM TCP/IP Total CPU
CPU% CPU% CPU% CPU% CPU% ms/request

3037	43		286	o5	12		42	145			
4602		65		41	o7	18		634	13.8		
6147		88		586	09	24		819	13.3		
o175		133		89		13		35	1224	133	
177		185		1437		17		47		1940	165
Table 110: Applets, TCP/IP connection, COMMAREA 2000 bytes											
Throughput	CICS CTG VTAM TCP/IP Total CPU										
CPU% CPU% CPU% CPU% CPU% ms/request											
2881		42		359	o5	1.2	519	18.0			
4345		64		530	o7	18		774	17.8		
5786		85		701	09	23		943	163		
7801		125		1130		12		32		1509	
10260	165	1512		14	4.2	2007	19.6				
Table 111: Applets, TCP/IP connection, COMMAREA 4000 bytes											
Throughput	CICS CTG VTAM TCP/IP Total CPU										
CPU% CPU% CPU% CPU% CPU% ms/request											
2941		46		384	o5	13		552	188		
4410		69		52	08	19		774	176		
5859		93		763		10	28		1240		21.2
7986	135	1201		12	35		1603	20.1			
9942		1712		1524		14	45	2026	204		
Table 112: Applets, TCP/IP connection, COMMAREA 8000 bytes											
Throughput CICS CTG VTAM TCP/IP Total CPU											
CPU% CPU% CPU% CPU% CPU% ms/request											
329		56		49	o6	16	687	209			
4855	84		764		09	23		1016		20.9	
623		112	1033		11	30		1374	22.0		
8403		156		1429	14	43		1897		22.6	
9146		171		1540	15	48		2047	224		
Table 113: Applets, TCP/IP connection, COMMAREA 16000 bytes											
Throughput CICS CTG VTAM TCP/IP Total CPU											
CPU% CPU% CPU% CPU% CPU% ms/request											
2590	51	535		o8	24		735	284			
331	76	798		12	34	1064	27.8				
4974		103		1023	15	4.7	1380		27.7		
6652		143		1320	21	7.1	1802		27.1		

| 83 | 178 | 1sa6 | 26 | 87 | 2121 || 21 |

In the following measurementsin Table 114 the work from the 500 clients was balanced across four
CTG Java gateway application address spaces using TCP/IP port sharing. The TCP/IP connection was
re-used across ECI calls. The COMMAREA size was 100 bytes. The CTG CPU usage is the sum of all
four CTG address spaces.

Table 114: Applets, TCP/IP connection, multiple CTG address spaces

Throughput| CICS AllCTG VTAM TCP/IP Total CPU
CPU% CPU% CPU% CPU% CPU% | mslrequest

| 988 | 134 || 5548 | 13 | 33 | 81 | 8.5 |

| 1233 || 166 || 693 || 16 | 40 | 1036 || 8.4 |

| 1641 || 220 || 932 | 21 || 53 | 138 | 8.3 |

| 2422 || 324 || 1465 | 28 | 75 | 2065 | 8.5 |

| 4541 || 607 || 2963 | 43 || 138 | 2415 | 5.3 |

The following measurements in Table 115 on page 202 through Table 120 on page 203 were performed
using aHTTP connection from the applet to the CTG Java gateway application that was not re-used, a
range of COMMAREA sizes from 100 bytes to 16,000 bytes was used.

Table 115: Applets, HTTP connection, COMMAREA 100 bytes

Throughput CICS CTG VTAM TCP/IP Total CPU
CPU% CPU% CPU% CPU% CPU% ms/request

| 1359 | 20 || 721 || o6 | 15 || 904 | 66.5 |

| 1909 || 29 || 1036 | o7 | 18 || 1260 | 660 |

| 2378 || 36 || 1348 | 10 | 23 || 1637 || 688 |

| 2715 || 42 || 1464 | 11 | 28 || 1752 || 64.5 |

| 3179 || 49 || 1813 || 14 || 34 | 2169 | 682 |

Table 116: Applets, HTTP connection, COMMAREA 1000 bytes

Throughput| CICS CTG VTAM TCP/IP Total CPU
CPU% CPU% CPU% CPU% CPU% ms/request

| 1353 || 20 || 713 | o6 | 14 || 8.0 | 659 |

| 1902 || 29 || 1044 | o7 | 18 || 1273 | 66.9 |

| 2382 || 37 || 1348 | 10 | 23 || 1629 || 684 |

| 2703 || 42 || 1491 || 12 | 28 || 1783 || 66.0 |

| 3173 | 49 || vy || 14 | 33 || 2130 | 67.1 |

Table 117: Applets, HTTP connection, COMMAREA 2000 bytes

Throughput| CICS CTG VTAM TCP/IP Total CPU
CPU% CPU% CPU% CPU% CPU% ms/request

1364	20		7280	o8	19		89	659			
1904		28		1007	09	2.1	1352	71.0			
2385		37		1409	12	2.9	1718		72.0		
2714		41		1525	14	34		1839	67.7		
2008		47		1707		16		40		2059	687
Table 118: Applets, HTTP connection, COMMAREA 4000 bytes											
Throughput	CICS CTG VTAM TCP/IP Total CPU										
CPU% CPU% CPU% CPU% CPU% ms/request											
1364		21		69	08	25		849	62.2		
1896		29		1068	09	23		1321		69.7	
2385		35		1325	10	22		1604		673	
2722		41		1486	11	28		1782		655	
3168		48	17183		14	33		2138	67.5		
Table 119: Applets, HTTP connection, COMMAREA 8000 bytes											
Throughput	CICS CTG VTAM TCP/IP Total CPU										
CPU% CPU% CPU% CPU% CPU% ms/request											
1356		23		688		10		30		82	650
1902		29		1025	o8	17	1259	66.2			
2378		37		1320		10	23		1605		67.5
2729	42		1484		12	28		1780		65.2	
3148	49		1809		14	33		2171	69.0		
Table 120: Applets, HTTP connection, COMMAREA 16000 bytes											
Throughput CICS CTG VTAM TCP/IP Total CPU											
CPU% CPU% CPU% CPU% CPU% ms/request											
1330		26		78		13		40		905	680
1895		39		1199		18	5.2	1508	79.6		
2384	36	1301		10	2.2	1558	6533				
2725		41		146	11	2.7	1732		63.5		
318		48		1768	14	3.2	2092	65.7			

B.5.2 CTG Java servlets

The following data, presented in Table 121 on page 204 through Table 124 on page 205 , shows the
results for CTG Java servlets. Throughput is defined as ECI requests per second (or Web requests per
second if no ECI call). For all the tests 100 clients were used. For further details on the test scenario

refer to Chapter 7, "The OS/390 CTG" on page 103 .

The following CTG servlet measurementsin Table 121 on page 204 through Table 124 on page 205

were conducted to measure the effect of persistent HT TP connection and the cost of the ECI call within

the servliet. The COMMAREA size was 39 bytes for all servlets that used the ECI.

Table 121: Servlets, persistent HTTP connection, ECI

Throughput| CICS Web server VTAM TCP/IP Total CPU
CPU% CPU% CPU% CPU% CPU% | mslrequest
1969	28	46.2 ' o4		09		604	307			
245		35	57.6	o5		04	732	299		
3234		47	77.8	o6		12	974	301		
4737		73		1246		08		16	1887	3385
6082		97	1664		10		22	2116	348	
Table 122: Servlets, non-persistent HT TP connection, ECI										
Throughput	CICS Web server VTAM TCP/IP Total CPU									
CPU% CPU% CPU% CPU% CPU%	mslrequest									
1889	27	47.7	o9		18	637	3387			
2110		33	58.5	10		22	765	363		
2715		42	71.5	12		27	1017	375		
382	73	113 ' 16		40		1506	393			
4789	97	141 I 20		48		1869	390			
Table 123: Servlets, persistent HTTP connection, no ECI										
Throughput	CICS Web server VTAM TCP/IP Total CPU									
CPU% CPU% CPU% CPU% CPU%	mslrequest									
1975		00	36.4	o4		o8	473	240		
2449		o0	452 Il o5		09	s69	232			
3242	o00	59. I o5		11		720	22			
4737	00	96.7 \ o7z		15		1187	231			
6216		00	1313	09		19		1619		260
Table 124. Servlets, non-persistent HTTP connection, no ECI										
Throughput	CICS Web server VTAM TCP/IP Total CPU									
CPU% CPU% CPU% CPU% CPU%	mslrequest									
1889	00	36.6 ' os		17		505	267			
212712	o0	42.8 l o9		20		579	267			
273		o0	55.8	11		25	727	266		
3848	00	75.0 ' 15		35		949	247			
488		o0	108		18		44	1435	294	

Appendix C: Using the additional material

Overview

This redbook also contains additional material that can be downloaded from the Internet as described
below.

C.1 Locating the additional material on the Internet

The Web material associated with this redbook is also available in softcopy on the Internet from the
IBM Redbooks Web server. Point your Web browser to:

ftp://www.redbooks.ibm.com/redbooks/SG24-5748

Alternatively, you can go to the IBM Redbooks Web site at:

http://www.redbooks.ibm.com/

Select the Additional materials and open the directory that corresponds with the redbook form number.

C.2 Using the Web material

The additional Web material that accompanies this redbook includes the following:
Filename Description

Trader CicsWebSamples.zip Zipped code samples for the CICS Trader application, and Web-
enablement using CWS and the CTG.

C.2.1 System requirementsfor downloading the Web material
The following system configuration is recommended for downloading the additional Web material.

Hard disk space: 1 MB minimum
Operating System : Windows NT or 95
Processor : Intel 286 or higher
Memory : 16 MB

C.2.2 How to usethe Web material

Create a subdirectory (folder) on your workstation, download the contents of the Web material into this
folder, then unzip thefile.

Appendix D: Special notices

Overview

This publication isintended to help technical professionals to understand and plan for the performance

ftp://www.redbooks.ibm.com/redbooks/SG24
http://www.redbooks.ibm.com/

impact of Web-enabling legacy CICS applications. The information in this publication is not intended as
the specification of any programming interfaces that are provided by CICS Transaction Server v1.3 or
0S/390 WebSphere Application Server. See the PUBLICATIONS section of the IBM Programming
Announcement for CICS Transaction Server, and OS/390 WebSphere Application Server for more
information about what publications are considered to be product documentation.

References in this publication to IBM products, programs or services do not imply that IBM intends to
make these availablein al countriesin which IBM operates. Any reference to an IBM product, program,
or service is not intended to state or imply that only IBM's product, program, or service may be used.
Any functionally equivalent program that does not infringe any of IBM'sintellectual property rights may
be used instead of the IBM product, program or service.

Information in this book was developed in conjunction with use of the equipment specified, and is
limited in application to those specific hardware and software products and levels.

IBM may have patents or pending patent applications covering subject matter in this document. The
furnishing of this document does not give you any license to these patents. Y ou can send license
inquiries, in writing, to the IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk,
NY 10504-1785.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact IBM
Corporation, Dept. 600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and conditions, including in some
cases, payment of afee.

The information contained in this document has not been submitted to any formal IBM test and is
distributed ASIS. The use of thisinformation or the implementation of any of these techniquesisa
customer responsibility and depends on the customer's ability to evaluate and integrate them into the
customer's operational environment. While each item may have been reviewed by IBM for accuracy ina
specific situation, there is no guarantee that the same or similar results will be obtained el sewhere.
Customers attempting to adapt these techniques to their own environments do so at their own risk.

Any pointersin this publication to external Web sites are provided for convenience only and do not in
any manner serve as an endorsement of these Web sites.

Any performance data contained in this document was determined in a controlled environment, and
therefore, the results that may be obtained in other operating environments may vary significantly. Users
of this document should verify the applicable datafor their specific environment.

This document contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples contain the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

Reference to PTF numbers that have not been released through the normal distribution process does not
imply general availability. The purpose of including these reference numbersisto alert IBM customers
to specific information relative to the implementation of the PTF when it becomes available to each

customer according to the normal IBM PTF distribution process.

The following terms are trademarks of the International Business Machines Corporation in the United
States and/or other countries:

AlX AS/400

AT CICS
CICS/ESA CICSIMVS
CICSIVSE CICSPlex
CT DB2
DFSMS eNetwork
IBM IMS
Language Environment MQ
Netfinity 0S/390
Parallel Sysplex RACF
RAMAC RMF
RS/6000 S/390
SecureWay SP

SP2 System/390
VisualAge VTAM
WebSphere XT

400

The following terms are trademarks of other companies:
C-busisatrademark of Corollary, Inc. in the United States and/or other countries.

Javaand all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States and/or other countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in
the United States and/or other countries.

PC Direct isatrademark of Ziff Communications Company in the United States and/or other countries
and isused by IBM Corporation under license.

ActionMedia, LANDesk, MM X, Pentium and ProShare are trademarks of Intel Corporation in the
United States and/or other countries.

UNIX isaregistered trademark in the United States and other countries licensed exclusively through
The Open Group.

SET and the SET logo are trademarks owned by SET Secure Electronic Transaction LLC.

Other company, product, and service names may be trademarks or service marks of others.

Appendix E: Related publications

Overview

The publications listed in this section are considered particularly suitable for a more detailed discussion
of the topics covered in this redbook.

E.1 International Technical Support Organization publications

For information on ordering these ITSO publications see " How to get ITSO redbooks " on page 217 .

Revealed! Architecting Web Accessto CICS, SG24-5466

0S/390 Version 2 Release 4 Performance Figures for CICS Web-Enabled Applications, SG24-
5612

CICSTransaction Server for OS390 Version 1 Release3: Web Support and 3270 Bridge , SG24-
5480

Revealed! CICS Transaction Gateway with More CICS Clients Unmasked , SG24-5277
TCP/IP Implementation Guide , SG24-5227

IBM SecureWay Host On-Demand: Enter prise Communications Era Network Computing , SG24-
2149

Java Application Development for CICS Base Services and CORBA Client Support , SG24-5275
TCP/IP Tutorial and Technical Overview , GG24-3376

CICHESA and TCP/IP for MVS Sockets Interface , GG24-4026

Enterprise-Wide Security Architecture and Solutions , SG24-4579

Visual Age for Java Enterprise Version 2: Data Access Beans - Serviets - CICS Connector , SG24-
5265

0S390 MVS Parallel Sysplex Capacity Planning , SG24-4680

0S/390 e-business Infrastructure: 1BM WebSphere Application Server 1.1 - Customizing and
Usage , SG24-5604

E.2 Redbookson CD-ROMs

Redbooks are also available on the following CD-ROMSs. Click the CD-ROMs button at

http://www.redbooks.ibm.com/ for information about al the CD-ROMs offered, updates and formats.

http://www.redbooks.ibm.com/

CD-ROM Title Collection Kit Number

System/390 Redbooks Collection SK2T-2177
Networking and Systems Management Redbooks Collection SK2T-6022
Transaction Processing and Data Management Redbooks Collection SK2T-8038
L otus Redbooks Collection SK2T-8039
Tivoli Redbooks Collection SK2T-8044
AS/400 Redbooks Collection SK2T-2849
Netfinity Hardware and Software Redbooks Collection SK2T-8046
RS/6000 Redbooks Collection (BkMgr) SK2T-8040
RS/6000 Redbooks Collection (PDF Format) SK2T-8043
Application Development Redbooks Collection SK2T-8037
IBM Enterprise Storage and Systems Management Solutions SK3T-3694

E.3 Other publications
These publications are also relevant as further information sources:
1 CICS Performance Guide, SC33-1699
1 CICSInternet Guide , SC34-5445
1 CICSInternet and External Interfaces Guide , SC33-1944
1 CICSWeb Interface Guide , SC33-1892

1 IBM HTTP Server for OS/390 Release 7, Planning, Installing, and Using, Version 5.1, SC31-
8690

1 WebSphere Application Server for OS/390, Application Server Planning, Installing,and Using,
Version 1.1, GC34-4757

1 IBM TCP/IP Performance Tuning Guide , SC31-7188

1 OS/390 eNetwork Communications Server, |P Application Programming Interface Guide , SC31-
8516

1 CICSTransaction Gateway Administration Guide , SC34-5448

1 IBM TCP/IP Performance Tuning Guide , SC31-7188

1 OS/390 eNetwor ks Communications Server: |P Planning and Migration Guide , SC31-8512
1 Communications Server: IP Configuration Manual , SC31-8513

1 Applied Cryptography, ISBN 0-471-11709-9 , SR28-5808

How to get I TSO redbooks

Overview

This section explains how both customers and IBM employees can find out about I TSO redbooks,
redpieces, and CD-ROMs. A form for ordering books and CD-ROMs by fax or e-mail is aso provided.

1 RedbooksWeb Site http://www.redbooks.ibm.com/

Search for, view, download, or order hardcopy/CD-ROM redbooks from the redbooks Web site.
Also read redpieces and download additional materials (code samples or diskette/CD-ROM
images) from this redbooks site.

Redpieces are redbooks in progress; not all redbooks become redpieces and sometimes just afew
chapters will be published thisway. The intent is to get the information out much quicker than the
formal publishing process allows.

1 E-mail Orders

Send orders by e-mail including information from the redbooks fax order form to:

e-mail address
In United States < usi b6f pl @ brmai | . com >
Outside North Contact information isin the "How to Order" section at this site:

America http://www.elink.ibmlink.ibm.com/pbl/pbl
1 TelephoneOrders
United States 1-800-879-2755
(toll free)
Canada (toll 1-800-1BM-4YOU
free)
Outside North Country coordinator phone number isin the "How to Order" section at this site:
America http://www.elink.ibmlink.ibm.com/pbl/pbl
1 Fax Orders

United States ~ 1-800-445-9269

(toll free)

Canada 1-403-267-4455

Outside North Fax phone number isin the "How to Order" section at this site:
America http://www.elink.ibmlink.ibm.com/pbl/pbl

This information was current at the time of publication, but is continually subject to change. The latest
information may be found at the redbooks Web site.

http://www.redbooks.ibm.com/
mailto:usib6fpl@ibmmail.com
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl

IBM Intranet for Employees

IBM employees may register for information on workshops, residencies, and redbooks by accessing the
IBM Intranet Web site at http://w3.itso.ibm.com/ and clicking the ITSO Mailing List button. Look in the
Materials repository for workshops, presentations, papers, and Web pages devel oped and written by the

I TSO technical professionals; click the Additional Materials button. Employees may access MyNews at
http://w3.ibm.com/ for redbook, residency, and workshop announcements.

Glossary

An excellent glossary of Internet and Internet related termsis available at:

http://www.matisse.net/files/glossary.html

Other terms not covered in the above-mentioned Web document or clarified in this document are listed
below.

abend.
Abnormal end of task.

API.
Application programming interface. A set of calling conventions defining how a serviceis
invoked through a software package.

APPC.
Advanced program-to-program communication. An implementation of the SNA LU 6.2 protocol
that allows interconnected systems to communicate and share the processing of programs.

asynchronous.
Without regular time relationship; unexpected or unpredictable with respect to the execution of
program instructions. See synchronous .

browser.
An application that displays World Wide Web documents, usually referred to as a Web browser.

CEC
(also known as CPC). Central Electronic Complex (or Central Processing Complex) isthe
physical machine that contains main storage(memory), central processing units and connections to
devices.

CPU.
Central Processing Unit (also known as an engine or processor) is the part of the CEC that
executes the program instructions. There may be one or many CPUs in a CEC. Each CPU in the
CEC may access the main storage (memory) in that CEC. If there are multiple CPUs in a CEC,
then multiprocessing (or simultaneous execution of two threads of control) is possible.

CERN.
The Conseil Europeen pour la Recherche Nucleaire (European Particle Physics Laboratory),
which devel oped hypertext technologies.

distributed program link (DPL) .
Enables an application program executing in one CICS system to link (pass control) to a program
in adifferent CICS system. The linked-to program executes and returns aresult to the linking
program. This process is equivaent to remote procedure calls (RPCs). Y ou can write applications
that issue RPCs that can be received by members of the CICS family.

http://w3.itso.ibm.com/
http://w3.ibm.com/
http://www.matisse.net/files/glossary.html

distributed transaction processing (DTP) .
Enables a transaction running in one CICS system to communicate synchronously with
transactions running in other systems. The transactions are designed and coded specifically to
communicate with each other. This method istypically used by banks, for example in "just-in-
time" stock replacement.

Customer Information Control System (Cl CS) .
A distributed on-line transaction processing system designed to support a network of many
terminals. The CICS family of productsis available for avariety of platforms ranging from a
single workstation to the largest mainframe.

client.
Asin client/server computing, the application that makes requests to the server and, often, handles
the interaction necessary with the user.

client/server computing.
A form of distributed processing, in which the task required to be processed is accomplished by a
client portion that requests services and a server portion that fulfills those requests. The client and
server remain transparent to each other in terms of location and platform. See client and server .

commit.
An action that an application takes to make permanent the changesit has made to recoverable
resources during alogical unit of work.

Common Gateway Interface (CG) .
The defined standard for the communications between HTTP servers and external executable
programs.

conversational.
A communication model where two distributed applications exchange information by way of a
conversation; typically one application starts (or allocates) the conversation, sends some data, and
allows the other application to send some data. Both applications continue in turn until one
decides to finish (or deallocate). The conversational model is a synchronous form of
communication.

Coupling facility.

Isaspecial logical partition that provides high-speed caching, list processing, and locking
functions between systemsin aParallel Sysplex.

database.
(1) A collection of interrelated data stored together with controlled redundancy according to a
scheme to serve one or more applications. (2) All datafiles stored in the system. (3) A set of data
stored together and managed by a database management system.

Distributed Computing Environment (DCE) .
Adopted by the computer industry as a de facto standard for distributed computing. DCE allows
computers from avariety of vendors to communicate transparently and share resources such as
computing power, files, printers, and other objects in the network.

delimiter.
A character or sequence of characters used as a separator in text or datafiles.

Distributed processing.
An application or systems model in which function and data can be distributed across multiple
computing resources connected on a LAN or WAN. See client/server computing .

External Call Interface (ECI) .
An application programming interface (API) that enables a non-CICS client application to call a
CICS program as a subroutine. The client application communicates with the server CICS
program using a data area called a COMMAREA.

External Presentation Interface (EPI) .

An application programming interface (API) that allows anon-CICS application program to
appear to the CICS system as one or more standard 3270 terminals. The non-CICS application can
start CICS transactions and send and receive standard 3270 data streams to those transactions.
environment.
The collective hardware and software configuration of a system.
File Transfer Protocol (FTP) .
A protocol that defines how to transfer files from one computer to another.
forms.
Parts of HTML documents that allow users to enter data.
function shipping.
A CICS Inter Systems Communication protocol that enables an application program running in
one CICS system to access resources owned by another CICS system. In the resource-owning
system, amirror transaction isinitiated to perform the necessary operation; for example, to access
CICSfiles or temporary storage, and to reply to the requester.
gateway.
Software that transfers data between normally incompatible applications or between networks.
Graphic Interchange Format (G F) .
256-color graphic format.
Graphical user interface (GUI') .
A style of user interface that replaces the character-based screen with an all-points-addressabl e,
high-resolution graphics screen. Windows display multiple applications at the same time and
allow user input by means of akeyboard or a pointing device such as mouse, pen, or trackball.
host.
(1) In acomputer network, a computer providing services such as computation, database access,
and network control functions. (2) In a multiple computer installation, the primary or controlling
computer.
hypertext.
Text that activates connection to other documents when selected.
Hypertext Markup Language (HTM.) .
Standard language used to create hypertext documents.
Hypertext Transmission Protocol (HTTP) .
Standard WWW client/server communications protocol.
Internet.
A collection of networks.
LU type 6.2 (LU 6.2).
A type of logical unit used for CICS intersystem communication (1SC). LU 6.2 architecture
supports CICS host-to-system-level products and CICS host-to-device-level products. APPC isthe
protocol boundary of the LU 6.2 architecture.
Logical unit of work (LUW .

An update that durably transforms a resource from one consistent state to another consistent state.
A sequence of processing actions (for example, database changes) that must be completed before
any of the individual actions can be regarded as committed. When changes are committed (by
successful completion of the LUW and recording of the synch point on the system log), they do
not need to be backed out after a subsequent error within the task or region. The end of an LUW is
marked in atransaction by a synch point that isissued by either the user program or the CICS
server, at the end of task. If there are no user synch points, the entire task isan LUW.

LPAR.
Logical Partition is a subset of the CEC hardware. The CEC resources, CPUs and main memory,
can be shared between LPARs. Each LPAR is capable of running an instance, or image, of an

operating system.

On-line Transaction Processing (OLTP) .
A style of computing that supports interactive applications in which requests submitted by
terminal users are processed as soon as they are received. Results are returned to the requester in a
relatively short period of time. An on-line transaction processing system supervises the sharing of
resources to allow efficient processing of multiple transactions at the same time.

Parallel Sysplex.
Thisisasysplex that uses one or more coupling facilities.

proxy.
A software gateway between connecting networks that alows communication between the two
networks, by acting as both a client and a server. A popular usage of a proxy isaHTTP proxy
server, which allow Web browsersin a private intranet to connect to Web servers on the Internet,
but restricts al other network communications between the two networks.

pseudo-conversational .
A type of CICS application design that appears to the user as a continuous conversation but
consists internally of multiple tasks.

server.
Any computing resource dedicated to responding to client requests. Servers can be linked to
clients through LANs or WANSs to perform services, such as printing, database access, fax, and
image processing, on behalf of multiple clients at the same time.

Socket Secure (SOCKS) .
An proxy gateway that allows compliant client code (client code made socket secure) to establish
a TCP/IP session with aremote host via means of the SOCKS gateway.

Standard Generalized Markup Language (SGW.) .
The standard that defines several markup languages, HTML included.

synchronous.
(1) Pertaining to two or more processes that depend on the occurrence of a specific event such asa
common timing signal. (2) Occurring with aregular or predictable time relationship.

syncpoint (Synchronization point).
A logical point in execution of an application program or transaction where the changes made to
the recoverabl e resources are consistent, complete and can be committed. The output, which has
been held up to that point, is sent to its destination, the input is removed from the message queues,
and the database updates are made available to other applications.

sysplex.
A sysplex isaset of MV S systems (also called images) that communicate using multi-system
hardware components and software. Systems in a sysplex will share disk storage.

transaction.
A unit of processing (consisting of one or more application programs) initiated by asingle
request. A transaction can require the initiation of one or more tasks for its execution.

transaction processing.
A style of computing that supports interactive applications in which requests submitted by users
are processed as soon as they are received. Results are returned to the requester in arelatively
short period of time. A transaction processing system supervises the sharing of resources for
processing multiple transactions at the same time.

transaction routing.
Enables aterminal connected to one CICS system to run a transaction in another CICS system. It
iscommon for CICS/ESA, CICS/VSE, and CICS/MV S users to have a terminal-owning region
(TOR) that "owns' end-user network resources.

List of abbreviations

Al X Advanced Interactive eXecutive

AOR application owning region

API application programming interface

APPC Advanced Program-to-Program Communication
ASCII American National Standard Code for Information Interchange
BLI businesslogic interface

BMS basic mapping support

Cal Common Gateway Interface

CICs Customer Information Control System

ClIG CICS Internet Gateway

COMMAREA communication area

CORBA Common Object Request Broker

CSD CICS system definition

CTG CICS Transaction Gateway

Cwi CICS Web Interface

CWsS CICS Web support

DNS Domain Name Server

DPL distributed program link

DTP distributed transaction processing

ECI external call interface

EJB Enterprise JavaBeans

EPI external presentation interface

ESA Enterprise Systems Architecture

ES external security interface

EXCI external CICS interface

HOD Host on-Demand

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

IBM International Business Machines Corporation
[11OP Internet Inter ORB Protocol

IP Internet Protocol

ISC intersystem communication

ITSO International Technical Support Organization
JCICS CICS Java support

JDK Java Development Kit

JCT Journal Control Table

JIT just-in-time

JNI Java Native Interface

JRE Java Runtime Environment

JVM JavaVirtual Machine

LAN local area network

LUW logical unit of work

OLTP on-line transaction processing
RACF Resource Access Control Facility
RDO Resource definition on-line

RMI Java remote method invocation
RPC remote procedure call

SNA Systems Network Architecture
SIT system initialization table

SNT sign-on table

SOCKS socket secure

SSL Secure Socket Layer

TCP/IP Transmission Control Protocol/Internet Protocol
TOR terminal owning region

TRUE task-related user exit

URI Uniform Resource Identifier
URL Uniform Resource Locator or Universal Resource L ocator
WLM work load manager

WOR Web owning region

WWW World Wide Web

| ndex

Numerics

3270

BMS 44

RECEIVE 44

SEND 44, 56

3270 bridge 51

3270 Web bridge 154

See 3270 Web bridge
bridge facilities 54 , 136
garbage collection 13, 55
HTML templates 56

state management 13 , 44

A

AP
DOCUMENT API 66, 137

Application Owning Region (AOR) 159

B

business logic interface

See also DFHWBBLI

converter 9

Decode 9

Encode 9

business logic interface (BLI) 9

C

capacity planning 31

3270 Web bridge 61

CICS Transaction Gateway 157
CICS Web support 76 , 155
CICS Web support with SSL 96
CICS WebServer Plugin 156
CTG Java applets 119

CTG Java servlets 126

CEC 22, 161

CICS Transaction Gateway (CTG) 103, 140, 151
applets14, 17, 104, 140
applets See also Java applets
COMMAREA size 115
connection reuse 110, 115, 140
connection, HTTP 17, 114, 140
connection, TCP/IP 115, 140
data compression 141 , 142

ECI Java methods 14 , 103

EPI Java methods 15

EXCI, useof 15, 110, 141 , 143
Javaclasslibrary 15

Java gateway application 15
local protocol, with servlets 18
network 1/0 109, 111

security exit 142
servlets 14, 18, 106, 144
servlets See also Java servlets
TCP/IP port sharing 118
Terminal Servlet 15

thread usage 145

threads, connectionManager 143
threads, worker 108

CICS Universal Client 15

CICS Web Interface (CWI) 6
CICS Web support 6

See also 3270 Web bridge

See also business logic interface
alias9

analyzer 9

CICS WebServer Plugin 7,10, 80, 134
direct connection 78 , 134
HTML template manager 8

Sockets listener 7, 9

Web attach transaction 9

CICSPlex System Manager 30, 149
COMMAREA 4,5,18

Common Connector Framework (CCF) 16
CORBA, CICS support of 3

CPU

% usage 169

capacity 22

using too much 146

cryptography

See also Cryptographic Coprocessor Feature
See also Secure Sockets Layer

asymmetric key

See public/private key

DES88, 139

public/private key 87

RC4-MD591, 95, 139

sadlted data 139

secret key 87

symmetric key

See secret key

CSMI, mirror transaction 10

CWBA, diastransaction 9

CWXN, Web attach transaction 9, 66, 135

D

DFHCCNV, data conversion program 9
DFHHTML, HTML template PDS 135
DFHWBA, alias program 9

DFHWBAPI, CICS WebServer Plugin 7
DFHWBBLI, business logic interface 9
DFHWBGB, garbage collection program 13
DFHWBLT, Web bridge exit 13
DFHWBST, state management program 13
DFHWBTTA, Web terminal tranglation program 13
disk1/0 24 , 44

Distributed Program Link (DPL) 4

dynamic 149

DOCTEMPLATE 135

E

eNetwork Communications Server 27
Dynamic DNS 30, 148

TCP/IP 27

buffer sizes 135

port sharing 30, 118, 159

VTAM 27

generic resource 159

Enqueue/Dequeue 45

Enterprise Access Builder (EAB) 16

EXCI 5

use by CICS Transaction Gateway 15, 17, 104
use by CICS WebServer Plugin 7, 134
extranet 148

H

hardware 161

Host On-Demand

See SecureWay

HTTP 28

data sizes 150
datastream 68 , 134, 136, 137
GET 66

headers 134

HTTPS 86

POST 67
|

Integrated Cryptographic Service Facility 88
Internet 25, 85, 148

I nternet Connection Secure Server

See Web server

intranet 148

J

Java 28

applets 104

Native Interface (JNI) 110
0S/390 VM performance 123
presentation logic 144

servlets 106 , 144

servlets, design of 110

L

Language Environment (LE) options 24

Large System Performance Reference (LSPR) 31
linear fit equations 47 , 77

Lotus Domino Go Webserver

See Web server

N

network

adapter 25

ATM LAN emulation 161
infrastructure 25

network 1/0 25, 44 , 109

See also Internet, intranet and extranet

P

paging 23

performance

Seealso disk I/0

See also network 1/0

bottleneck 21

CPU capacity 22

guidelines 21

programming 4

Seealso API

businesslogic 4, 44, 65, 150
COMMAREA manipulation 7, 74
presentation logic 4, 65, 69 , 150
Web-aware 7 , 65
pseudo-conversation 55, 150
continuous vs. non-continuous 60
length of 136

R

response times 72
R-square
See linear fit equations

S

Secure Sockets Layer 85, 138, 150
See also cryptography
authentication, client 93
certificate, client 86
certificate, server 86

cipher suites 86 , 88
datatransmission 95, 98, 139
handshake 86 , 98 , 138
handshake, full 88

handshake, null 88

record protocol 86

server key, 1024 bit 91

server key, 512 bit 91

session |D re-use 88

X.509 certificates 86
SecureWay

Host on-Demand 3
Network Dispatcher 30
SIT parameters
EDSALIM 44
ENCRYPTION 166
MXT 23, 135
SSLDELAY 97, 166
SSLTCBS 139
SUBTSKS 146
TRANISO 24
WEBDELAY 13,55
software, levels 162
State data 69

storage 23

DSA 139

EDSA 44

T

TCBs 27

COTCB 146

FO TCB 146

QRTCB 27, 33

S8 TCB 97

SL TCB 147

SO TCB 147
stealing of 97,99, 139

TCP/IP

See eNetwork Communications Server
TCPIPSERVICE 30

BACKLOG 28, 135
SOCKETCLOSE 56, 96, 135, 166
TSQPREFIX 136

Terminal Owning Region (TOR) 159
Trader 37

business transaction 37

Company 153

TRADERBL 38, 52, 106
TRADERPL 38, 52

Vv

VSAM Record Level Sharing (RLS) 159
VTAM
See eNetwork Communications Server

w

Web Owning Region (WOR) 159
Web server, 0S/390 10, 27

WebSphere Application Server

See Web server

workload management 29, 148

See also CICSPlex Systemm Manager

See also eNetwork Communications Server ,
dynamic DNS and TCPF/IP Port Sharing

See also SecureWay Network Dispatcher

List of Figures
Chapter 1: CICSand Web-enabling

Figure 1. Separation of CICS business and presentation logic
Figure 2: CICS Web support

Figure 3: CICS Web support — direct connection

Figure 4: CICS Web support, with the CICS WebServer Plugin
Figure 5: CICS Web support — 3270 Web bridge

Figure 6: CICS Transaction Gateway

Figure 7: CICS Transaction Gateway applet architecture on OS/390
Figure 8: CICS Transaction Gateway servlet architecture on OS/390

Chapter 2: Performance and capacity planning factors

Figure 9: Performance flowchart

Chapter 3: The 3270 green screen Trader application

Figure 10: 3270 Trader application summary

Figure 11: Trader signon display

Figure 12: Company selection display

Figure 13: Options menu display

Figure 14: Real-time quote display

Figure 15: Shares — Buy display

Figure 16: 3270 Trader workload, throughput vs. CPU usage

Figure 17: 3270 Trader workload, throughput vs. CPU ms/transaction
Figure 18: Linear equations for 3270 Trader CPU usage

Figure 19: Breakdown of CPU usage for 3270 Trader application

Chapter 4: CWSwith the 3270 Web bridge

Figure 20: 3270 Web bridge Trader application flow

Figure 21: 3270 Web bridge test environment

Figure 22: 3270 Web bridge, non-continuous pseudo-conversation

Figure 23: 3270 Web bridge, continuous vs. non-continuous pseudo-conversation
Figure 24: 3270 Web bridge general increase formulae

Figure 25: Capacity planning estimates for Trader via 3270 Web bridge

Chapter 5: CWSwith Web-awar e presentation logic

Figure 26: Separation of business logic and presentation logic

Figure 27: Trader application flow using CWS and Web-aware presentation logic
Figure 28: CWS test environment

Figure 29: CPU usage of 5 KB send using CWS direct connection

Figure 30: CPU usage of 5 KB byte send using CWS WebServer Plugin

Figure 31: CWS HTTP data transfers, COMMAREA vs. WEB API application design
Figure 32: CPU usage for HTTP data transfers using CWS direct connection

Figure 33: CPU usage for HTTP data transfers CWS and WebServer Plugin

Figure 34: Equations for CPU usage per Web request based on HTTP data size

Figure 35: Capacity planning estimates for Trader via CWS

Chapter 6: SSL with CWS

Figure 36: SSL handshake process

Figure 37: Types of SSL handshakes

Figure 38: SSL handshakes — CWS direct connection

Figure 39: SSL handshakes, client certificates

Figure 40: SSL handshakes — WebServer Plugin

Figure 41: CPU usage for 8 KB SSL data transmissions

Figure 42: Capacity planning estimates for Trader via CWS with SSL

Chapter 7: TheOS390 CTG

Figure 43: Trader application flow using the CTG applet architecture
Figure 44: Trader application flow using the servlet architecture
Figure 45: CTG threading model

Figure 46: CTG applet test environment

Figure 47: CPU usage of CTG applets, with an HTTP connection
Figure 48: CPU usage of CTG applets, with a TCP/Ip connection
Figure 49: CPU usage of CTG applets making TCP/IP connection
Figure 50: CPU cost of varying CTG applet ECI COMMAREAS
Figure 51: CPU usage of CTG applets using multiple CTG address spaces
Figure 52: CTG servlet test environment.

Figure 53: CPU usage of CTG servlets

Figure 54: CPU usage of servlets with and without the CTG

Figure 55: CPU usage of servlets with persistent HT TP connections
Figure 56: CPU usage comparison for Trader viaCTG

Chapter 8: Conclusions and recommendations

Figure 57: Capacity planning estimates to Web-enable the Trader application
Figure 58: Data compression using CTG applets

Figure 59: CICS dispatcher statistics extract

Figure 60: Components to provide workload balancing

Chapter 9: CICS Web capacity planning example

Figure 61: Thefinal Trader configuration

List of Tables

Chapter 2: Performance and capacity planning factors

Table 1: Selected LSPR ratios for CICS

Chapter 3: The 3270 green screen Trader application

Table 2: CPU costs from CICS monitoring for 3270 Trader application
Table 3: CPU percentage breakdown for Trader via 3270 Web bridge

Chapter 4. CWSwith the 3270 Web bridge

Table 4. Estimated CPU increase for Trader via 3270 Web bridge
Table 5: CPU percentage breakdown for Trader via 3270 Web bridge

Chapter 5. CWSwith Web-awar e presentation logic

Table 6: HTTP datastream sizes when using Trader viaCWS

Table 7: Breakdown of costsin CWS Web-enabled Trader

Table 8: CPU usage per Web request with CWS and direct connection
Table 9: CPU percentage breakdown for CWS direction connection
Table 10: CPU usage per Web request with CWS WebServer Plugin
Table 11: CPU percentage breakdown for CWS WebServer Plugin

Chapter 6: SSL with CWS

Table 12: SSL handshake delta

Table 13: SSL data transmission delta

Table 14: CPU usage per Web request with SSL and a CWS direct connection
Table 15: CPU percentage breakdown for CWS direct connection with SSL

Chapter 7: The OS/390 CTG

Table 16: CPU cost per ECI call with increasing COMMAREA sizes
Table 17: CPU percentage breakdown for CTG applet Trader
Table 18: CPU percentage breakdown for CTG servlet Trader

Chapter 9: CICSWeb capacity planning example

Table 19: Single business transaction using 3270 access
Table 20: Single business transaction using CWS with the 3270 Web bridge
Table 21: Single business transaction using CWS and Web-aware logic

Table 22: Single business transaction using CWS with WebServer Plugin
Table 23: Single business transaction using CTG Java applets
Table 24: Single business transaction using CTG Java servlets

Appendix A: Test environments

Table 25: CICS SIT parameters

Table 26: CICS SIT parameters for CICS Web support

Table 27: TCPIPSERVICE definition

Table 28: TCP/IP parameters

Table 29: CICS SIT parameters for CICS Web support with SSL
Table 30: SSL configuration parameters

Appendix B: Performance data

Table 31: 3270 Trader CPU usage

Table 32: 3270 Web bridge, continuous pseudo-conversation

Table 33: 3270 Web bridge, non-continuous pseudo-conversation

Table 34: CWS direct connection, data transmission sizes

Table 35: CWS direct connection, persistent HT TP connection, 100 byte send
Table 36: CWS direct connection, persistent HT TP connection, 5KB send

Table 37: CWS direct connection, persistent HTTP connection, 15KB send

Table 38: CWS direct connection, persistent HT TP connection, 32KB send

Table 39: CWS direct connection, persistent HTTP connection, 33KB send

Table 40: CWS direct connection, persistent HT TP connection, 50KB send

Table 41: CWS direct connection, persistent HT TP connection, 100 byte receive
Table 42: CWS direct connection, persistent HT TP connection, 5KB receive
Table 43: CWS direct connection, persistent HT TP connection, 15K B receive
Table 44: CWS direct connection, persistent HT TP connection, 32KB receive
Table 45: CWS direct connection, persistent HT TP connection, 33KB receive
Table 46: CWS direct connection, persistent HT TP connection, 50K B receive
Table 47: CWS direct connection, non-persistent HT TP connection, 100 byte send
Table 48: CWS direct connection, non-persistent HTTP connection, 5KB send
Table 49: CWS direct connection, non-persistent HT TP connection, 15KB send
Table 50: CWS direct connection, non-persistent HT TP connection, 32KB send
Table 51: CWS direct connection, non-persistent HT TP connection, 33KB send
Table 52: CWS direct connection, non-persistent HT TP connection, 50KB send
Table 53: CWS direct connection, non-persistent HTTP connection, 100 byte receive
Table 54: CWS direct connection, non-persistent HT TP connection, 5KB receive
Table 55: CWS direct connection, non-persistent HT TP connection, 15K B receive
Table 56: CWS direct connection, non-persistent HT TP connection, 32KB receive
Table 57: CWS direct connection, non-persistent HT TP connection, 33KB receive
Table 58: CWS direct connection, non-persistent HT TP connection, 50K B receive
Table 59: CWS direct connection, COMMAREA manipulation, 5KB send

Table 60: CWS direct connection, COMMAREA manipulation, 5KB receive
Table 61: CWS and WebServer Plugin, data transmission sizes

Table 62: WebServer Plugin, persistent HT TP connection, 100 bytes send

Table 63: WebServer Plugin, persistent HT TP connection, 5KB send

Table 64: WebServer Plugin, persistent HT TP connection, 15KB send

Table 65: WebServer Plugin, persistent HT TP connection, 32KB send

Table 66: WebServer Plugin, persistent HT TP connection, 100 byte receive
Table 67: WebServer Plugin, persistent HTTP connection, 5KB receive

Table 68: WebServer Plugin, persistent HT TP connection, 15K B receive

Table 69: WebServer Plugin, persistent HT TP connection, 32KB receive

Table 70: WebServer Plugin, non-persistent HT TP connection, 100 byte send
Table 71: WebServer Plugin, non-persistent HT TP connection, 5KB send

Table 72: WebServer Plugin, non-persistent HT TP connection, 15KB send
Table 73: WebServer Plugin, non-persistent HT TP connection, 32KB send
Table 74: Data transmission sizes, CWS direct connection

Table 75: Data transmission sizes, WebServer Plugin

Table 76: Non-SSL, non-persistent HT TP connection, CWS direct connection
Table 77: SSL full handshake, 1024-bit key, CWS direct connection

Table 78: SSL full handshake, 512-bit key, CWS direct connection

Table 79: SSL full handshake with crypto, 1024-bit key, CWS direct connection
Table 80: SSL full handshake with crypto, 512-bit key, CWS direct connection
Table 81: SSL null handshake, 1024-bit key, CWS direct connection

Table 82: SSL null handshake, 512-bit key, CWS direct connection

Table 83: SSL full handshake, 1024-bit key, client certs, CWS direct connection
Table 84: SSL full handshake with crypto, 1024-bit key, client certs, CWS direct connection
Table 85: Non-SSL 1 byte transmission, CWS direct connection

Table 86: Non-SSL 8K B transmission, CWS direct connection

Table 87: Non-SSL 16K B transmission, CWS direct connection

Table 88: SSL 1 byte transmission, RC4-MD5(40 bit), CWS direct connection
Table 89: SSL 8KB transmission, RC4-MD5(40 bit), CWS direct connection
Table 90: SSL 16K B transmission, RC4 -MD5(40 bit), CWS direct connection
Table 91: SSL 1 byte transmission, RC4-MD5(128 bit), CWS direct connection
Table 92: SSL 8KB transmission, RC4-MD5(128 bit), CWS direct connection
Table 93: SSL 16K B transmission, RC4 -MD5(128 bit), CWS direct connection
Table 94: SSL 1 byte transmission, triple DES, CWS direct connection

Table 95: SSL 8KB transmission, triple DES, CWS direct connection

Table 96: SSL 16K B transmission, triple DES, CWS direct connection

Table 97: SSL 1 byte transmission, triple DES with crypto, CWS direct connection
Table 98: SSL 8KB transmission, triple DES with crypto, CWS direct connection
Table 99: SSL 16K B transmission, triple DES with crypto, CWS direct connection
Table 100: SSL full handshake, 1024 bit key, WebServer Plugin

Table 101: SSL full handshake, 512-bit key, WebServer Plugin

Table 102: SSL null handshake, 1024-hit key, WebServer Plugin

Table 103: SSL null handshake, 512-bit key, WebServer Plugin

Table 104: SSL 1 byte transmission, RC4-MD5(40 bit), WebServer Plugin
Table 105: SSL 8KB transmission, RC4-MD5(40 bit), CWS direct connection
Table 106: SSL 16KB transmission, RC4 -MD5(40 bit), CWS direct connection
Table 107: Applets, TCP/IP, no connection re-use, COMMAREA 100 bytes
Table 108: Applets, TCP/IP connection, COMMAREA 100 bytes

Table 109: Applets, TCP/IP connection, COMMAREA 1000 bytes

Table 110: Applets, TCP/IP connection, COMMAREA 2000 bytes

Table 111: Applets, TCP/IP connection, COMMAREA 4000 bytes

Table 112: Applets, TCP/IP connection, COMMAREA 8000 bytes

Table 113: Applets, TCP/IP connection, COMMAREA 16000 bytes

Table 114: Applets, TCP/IP connection, multiple CTG address spaces

Table 115: Applets, HTTP connection, COMMAREA 100 bytes

Table 116: Applets, HTTP connection, COMMAREA 1000 bytes

Table 117: Applets, HTTP connection, COMMAREA 2000 bytes
Table 118: Applets, HTTP connection, COMMAREA 4000 bytes
Table 119: Applets, HTTP connection, COMMAREA 8000 bytes
Table 120: Applets, HTTP connection, COMMAREA 16000 bytes
Table 121: Servlets, persistent HTTP connection, ECI

Table 122: Servlets, non-persistent HT TP connection, ECI

Table 123: Servlets, persistent HTTP connection, no ECI

Table 124: Servlets, non-persistent HT TP connection, no ECI

List of Sidebars
Chapter 1: CICS and Web-enabling

CWS and CWI

Chapter 5: CWSwith Web-awar e presentation logic

CPU Usage for Trader
CPU Usage for Trader

Chapter 6: SSL with CWS

SSL CPU estimation
CPU cost of Trader with SSL
CPU cost of SSL for Trader

Chapter 7: TheOS390 CTG

CTGV3.1
0S/390 servliet VM performance

How to get I TSO redbooks

IBM Intranet for Employees

	Header
	Title Page
	Preface
	Part 1: Performance and CICS Web-enabling
	Chapter 1: CICS and Web-enabling
	Chapter 2: Performance and capacity planning factors
	Chapter 3: The 3270 green screen Trader application
	Chapter 4: CWS with the 3270 Web bridge
	Chapter 5: CWS with Web-aware presentation logic
	Chapter 6: SSL with CWS
	Chapter 7: The OS/390 CTG
	Chapter 8: Conclusions and recommendations
	Chapter 9: CICS Web capacity planning example
	Appendix A: Test environments
	Appendix B: Performance data
	Appendix C: Using the additional material
	Appendix D: Special notices
	Appendix E: Related publications
	Glossary
	Index
	List of Figures
	List of Tables
	List of Sidebars

