

A Performance Study of Web Access to CICS
For CICS Transaction Server Version 1 Release 3 and OS/390
Version 2 Release 7

Phil Wakelin,

Graham Rawson,

Per Fremstad,

Dave Scott,

Andy Abbey

© Copyright International Business Machines Corporation 2000. All rights reserved. by

For CICS Transaction Server Version 1 Release 3 and OS/390 Version 2 Release 7International
Technical Support Organization

www.redbooks.ibm.com

IBM International Technical Support Organization

First Edition (February 2000)

This edition applies to Version 1, Release 3 of CICS Transaction Server for OS/390 (program number
5655-147); Version 3, Release 1 of the CICS Transaction Gateway for OS/390 (program number 5648-
B43), and Version 1, Release 1 of WebSphere Application Server for OS/390; for use together with the
OS/390 Version 2 Release 7 Operating System.

Comments may be addressed to:

IBM Corporation, International Technical Support Organization
Dept. QXXE Building 80-E2

|

A Performance Study of Web Access to CICS
by Phil Wakelin, Graham Rawson and et al. ISBN: 0738415286

IBM Redbooks © 2000 , 244 pages

A detailed examination of potential hardware and software bottlenecks encountered when
exposing CICS systems onto the Internet.

Alan Zeichick

 Take
Note! Before using this information and the product it supports, be sure to read the general

information in Appendix D "Special notices" on page 209 .

http://www.redbooks.ibm.com

650 Harry Road
San Jose, California 95120-6099

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2000. All rights reserved.

Note to U.S Government Users - Documentation related to restricted rights - Use, duplication or
disclosure is subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

2000-10-25

Preface
The objective of this redbook is to help you understand the performance impact of Web-enabling your
CICS-based applications. It gives detailed performance measurements and capacity planning
information for Web access to CICS Transaction Server V1.3 when using OS/390 V2.7. The redbook
Revealed! Architecting Web Access to CICS , SG24-5466 explains the choices available to help you
decide which is the best solution to choose.

The CICS Web-enabling technologies covered in this redbook are: the CICS Web support function of
CICS Transaction Server V1.3, including usage of the 3270 bridge; the OS/390 Web server, which is
currently available as OS/390 WebSphere Application Server; and the CICS Transaction Gateway for
OS/390 V3.1. It also contains performance information on securing CICS Web support using SSL.

First, we give an overview of the different technologies and discuss the key factors affecting
performance of CICS and Web solutions. Following this, there is a summary of the performance figures
for each of the technologies we cover. Included is a simple methodology for OS/390 capacity planning
when using each technology, and a worked example of how to apply this methodology to the sample
"Trader" application.

We then present a summary of our conclusions and performance recommendations, and go on to
describe a fictional story of the Trader Company to illustrate how our capacity planning calculations
could be used. Finally, all the actual performance data and the details of the test environments are
documented.

The studies presented in this book were designed for the purpose of comparing the OS/390 CPU usage
of each technology. They were all simple test applications and were run in controlled laboratory
conditions at the IBM Hursley Laboratory, UK. As such, the results provide a good comparison of each
technology and with care can be used for capacity planning purposes. However, any capacity planning
estimate you use, whatever the source, should always be verified on a test system before the application
is put into production.

This redbook applies to Version 1, Release 3 of CICS Transaction Server for OS/390 (program number
5655-147); Version 3, Release 1 of the CICS Transaction Gateway for OS/390 (program number 5648-
B43), and Version 1, Release 1 of WebSphere Application Server for OS/390; for use together with the

OS/390 Version 2 Release 7 Operating System.

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world working at the International
Technical Support Organization San Jose Center.

Phil Wakelin is a senior I/T specialist at the International Technical Support Organization, San Jose
Center, and has 9 years experience working on most platforms and versions of CICS. He writes
extensively and teaches IBM classes on all areas of CICS, specializing in the CICS client-server and
Web technology. Before recently joining the ITSO, Phil worked in the Installation Support Center, IBM
UK as a pre-sales support specialist for CICS client-server.

Graham Rawson is a member of the CICS/390 Performance group working in the CICS/390
Development group based at IBM Hursley Laboratory in Winchester, England. He has 15 years of
experience with CICS. He has recently worked as a CICS Technical Support specialist with the
Installation Support Centre specializing in CICS/390, CICSPlex SM, and MVS Parallel Sysplex
exploitation.

Per Fremstad is a certified I/T specialist from IBM Norway, currently on assignment to the EMEA
S/390 New Technology Center in Montpellier, France. He has worked for IBM since 1982 and has
extensive experience with S/390 and Large Systems. His areas of expertise include the Web and the
Web enabling of applications on OS/390. He teaches frequently on Web and Java topics, especially at
the IBM's customer briefing center in Montpellier.

Dave Scott is a senior I/T specialist with IBM Global Services, in the US. He has 12 years experience
working with CICS, the past 2 years with IBM. His current responsibilities include working in the field
with customers implementing a variety of CICS solutions.

Andy Abbey is a member of the CICS/390 Performance group working in the CICS/390 Development
group based at IBM Hursley Laboratory in Winchester, England. He has spent 13 of the 25 years he has
worked for IBM within the CICS group, both as a developer and as a performance specialist.

Thanks to the following people for their invaluable contributions to this project:

Yvonne Lyon, Emma Jacobs, Elsa Martinez, HansPeter Nagel, Eugene Deborin, Mary Comianos,
Laymond Pon, John Byrd of the International Technical Support Organization, San Jose Center

John Burgess, Paul Harris, Richard Cowgill of the IBM CICS/390 Performance group, IBM Hursley.

Nigel Williams, Geoff Sharman, Chris Goodall, Steve Longhurst, Peter Havercan, Steve Wood, John
Kaputin, IBM Hursley.

Carl Parris, Judi Bank, IBM Poughkeepsie.

Carol Shanesy, Leigh Compton, IBM Dallas Systems Support Center.

Norbert Verbestel, IBM Belgium

John Green, IBM Toronto.

Bob Yelavich, CICS consultant.

Comments welcome
Your comments are important to us!

We want our redbooks to be as helpful as possible. Please send us your comments about this or other
redbooks in one of the following ways:

l Use the on-line evaluation form found at http://www.redbooks.ibm.com/

l Send your comments in an Internet note to < redbook@us.ibm.com >

Part 1: Performance and CICS Web-enabling
Chapter List
Chapter 1: CICS and Web-enabling
Chapter 2: Performance and capacity planning factors

Chapter 1: CICS and Web-enabling
Overview
In this section of the redbook we give a brief overview of the CICS Web-enabling technologies we
cover in this book, together with reference information, if you wish to find out more about these
technologies.

A detailed overview of the current strategic CICS Web-enabling options is given in the redbook
Revealed! Architecting Web Access to CICS, SG24-4566, and the CICS Web/selection guide whitepaper,
available at:

l http://www.ibm.com/software/ts/cics/library/whitepapers/cicsweb

These two sources of information detail the following four CICS Web-enabling technologies:

l CICS Web support (CWS)

l CICS Transaction Gateway (CTG)

l CICS CORBA client support

l Host On-Demand

http://www.redbooks.ibm.com/
mailto:redbook@us.ibm.com
http://www.ibm.com/software/ts/cics/library/whitepapers/cicsweb

This performance study only covers the CWS function in CICS TS V1.3 and the OS/390 CICS
Transaction Gateway. If you wish to find more information about CICS CORBA Client support and
Host On-Demand, you should refer to the following documentation:

l Java Application Development for CICS , SG24-5275

l IBM SecureWay Host On-Demand: Enterprise Communication Era Network Computing , SG24-
2149

First, we will give a brief overview of the principles of CICS modular design as it relates to CICS Web-
enabling, before presenting a general introduction to the CWS and the OS/390 CTG technologies.

1.1 The separation of presentation and business logic
A sound principle of modular programming in CICS application design is to separate the presentation
logic from the business logic. Such a modular design provides a separation of functions. Communication
between the programs is by using the EXEC CICS LINK command, and data is passed between such
programs in a COMMAREA (communication area). The structure of this data in the COMMAREA is
also part of the application design. This is illustrated in Figure 1 .

Figure 1: Separation of CICS business and presentation logic

The separation of business and presentation logic enables the programs that control the user interface
(presentation logic) to be separated from the programs that perform the actual business requests (such
updating database entries). These programs are still executed together as a single CICS task, but if
designed in this modular form, then they can readily exploit the distributed program link (DPL) and
workload management functions provided by CICS to spread work within a sysplex or between CICS
systems distributed across a network.

Further, if the business logic of a transaction is isolated from the presentation logic and given a
communication area (COMMAREA) interface, it is available for reuse with different presentation
methods. This means it can be invoked from a variety of sources; such as:

l From the CICS Universal Client using the External Call Interface (ECI) running on a workstation.

l From a program where the presentation logic is HTTP-based (Web-aware).

l From a Java applet or servlet using the facilities of the CICS Transaction Gateway and the ECI
Java methods

l From a CORBA client using the IIOP protocol and the JCICS classes.

l From another program running in the OS/390 Sysplex using the EXCI (External CICS Interface)
interface (such as a Web server ICAPI or CGI program).

l From any program which uses a CICS LINK and a COMMAREA structure to pass data.

Don't forget that there is a restriction on the size of data that can be passed in a CICS COMMAREA.
The maximum size of this area is 32 KB. With CWS in CICS TS V1.3 you now have the choice of using
the WEB API to send and receive HTTP datastreams and so are no longer subject to this 32 KB
restriction.

Many legacy applications were not designed or written with a separation of presentation and business
logic, and are often deemed too difficult or costly to re-engineer. For that reason IBM has developed
Web-enabling technologies which allow re-use of the 3270 interface as well as technologies which
utilize a callable COMMAREA interface.

1.2 CICS Web support
CICS Web support (CWS) provides client Web browsers with direct access to CICS programs or
transactions running in an OS/390 CICS region. The base requirements for this function are provided in
CICS/ESA V4.1, but significant enhancements are provided in CICS Transaction Server (CICS TS) V
1.3, which is the subject of this redbook.

CWS and CWI

In CICS Transaction Server V1.3, the CICS Web functionality, previously known as the CICS Web
Interface (CWI), was split into the listener support for TCP/IP and the protocol support for HTTP, and
was also internally redesigned. This book now refers to the CICS HTTP protocol support as CICS Web
support.

1.2.1 CICS Web support

CICS Web support (CWS) is a set of resources supplied with CICS TS V1.3 that provide CICS with
some functionality similar to a real Web server. A summary of this function is illustrated in Figure 2 .

Figure 2: CICS Web support

CWS provides a native HTTP interface to CICS, this interface can be used by both 3270 based
transactions and applications that provide a callable COMMAREA interface. Two different
configurations can be used to route the HTTP requests into the CICS region. Both configurations allow
the use of the same facilities in CICS, although the configuration of the two options is significantly
different. These configurations are as follows:

l A direct connection from a Web browser to CICS. This uses the facilities of the CICS Sockets
listener to pass the requests directly into CICS Web support.

l Through the OS/390 Web server using the facilities of the CICS WebServer Plugin
(DFHWBAPI). This is a CICS supplied extension to the OS/390 Web server. It routes requests
into the CICS Web support in a CICS region using the EXCI communication mechanism.

With both, the direct connection and the CICS WebServer Plugin, CWS can be used to invoke two types
of CICS applications.

l To invoke a 3270 transaction , the facilities of the CICS 3270 bridge are used. The 3270
transaction remains unchanged and the 3270 output is converted to HTML. We will refer to this
function as the 3270 Web bridge . This function is only available when using CICS Transaction
Server V1.2 or higher.

l To invoke an application that provides a callable COMMAREA interface, some new CICS
presentation logic must be written. This logic uses CICS facilities to interpret, act upon, and then
build and return the HTTP datastream. We will refer to a CICS application containing such logic
as " Web-aware ". This Web-aware logic can be contained either within the program or in a
separate presentation module that is linked to by the application. To create this Web-aware
presentation logic there are two different methods provided by CWS:

¡ WEB API

¡ COMMAREA manipulation

The WEB API, together with the DOCUMENT API and TCPIP API, provide a rich set of functions to
interpret, manipulate, and build the HTTP datastream within a CICS application. They are part of the
new function of CWS in CICS TS V1.3, and are described in more detail in chapter 12 of CICS Internet
Guide , SC34-5445, and chapter 3 of CICS Transaction Server for OS/390 Version 1, Release 3: Web
Support and 3270 Bridge , SG24-5480.

The COMMAREA manipulation technique was originally introduced with CWI support in CICS/ESA
V4.1. It uses the CICS COMMAREA as a buffer for transferring the HTTP datastream along with a
range of utility programs to manipulate the datastream. The CWS HTML template manager program
(DFHWBTL) is used to build the response. This technique is still available in CICS TS V1.3, but for
ease of use and higher functionality, we recommend use of the WEB API.

1.2.2 Using a CWS direct connection

Figure 3 illustrates the major components of CICS Web support when using Web-aware presentation
logic via a direct connection to CICS.

Figure 3: CICS Web support — direct connection

CICS Sockets listener

l The CICS Sockets domain provides TCP/IP support to handle requests for internal CICS functions
that use TCP/IP services, currently HTTP and IIOP support. The CICS Sockets listener is an
internal CICS function serviced by the private CSOL transaction, and should not be confused with
the CICS TCP/IP Sockets interface. Unlike the CICS Sockets listener, the CICS TCP/IP Sockets
interface provides an application level socket interface to the CICS application, and is described
further in the redbook CICS/ESA and TCP/IP for MVS Sockets Interface , GG24-4026.

Web attach transaction

l The Web attach transaction(CWXN) performs the Web attach processing. It invokes the
DFHCCNV data conversion routines, links to the specified analyzer, and then invokes the alias.
The CWXN task will terminate after invoking the alias, unless persistent HTTP connections are
used.

DFHCCNV

l The DFHCCNV data conversion routines are invoked by the Web Attach processing to convert
the HTTP headers and user data from the ASCII code page of the Web browser client to EBCDIC
and back.

Analyzer

l The purpose of the analyzer is to analyze the incoming HTTP request. It decides if the request will
be executed in the CICS system and if so, which resources are required. It uses the information in
the URL to decide the name of the alias transaction, converter and user program to be invoked.
The analyzer can also be modified so as to use HTTP basic authentication to check the
authenticity of each HTTP request.

Alias

l The alias transaction is invoked by the analyzer. The default alias transaction code is CWBA, but
this can be modified. The Alias transaction invokes the program DFHWBA, which links to the
business logic interface.

Business logic interface

l The business logic interface (BLI) is an externally callable interface that allows a client to invoke
the business logic in an application. It is implemented by the module DFHWBBLI. It provides a
mechanism for implementing Web-aware presentation logic in the " converter ". The converter
provides Decode and Encode routines to receive and send the HTTP presentation logic. Note that
it is possible to bypass the converter and implement the Web-aware logic in a separate module
which would communicate directly with the business logic via a COMMAREA interface.

1.2.3 Using the CICS WebServer Plugin

An alternative approach to accessing CICS Web support is through the services of the OS/390 Web
server, using the CICS WebServer Plugin, (DFHWBAPI). In this implementation, some of the function
previously handled through the CICS-supplied programs for CICS Web support is now replaced by
function within the Web server.

The OS/390 Web server has been rebranded at various times to reflect its positioning within IBM's
Internet product portfolio. The Internet Connection Secure Server (ICSS) Web server became the Lotus
Domino Go Webserver for OS/390, which has now been rebranded as WebSphere Application Server
for OS/390. Whatever server you are using, we will refer to it as the OS/390 Web server.

The CICS WebServer Plugin replaces the functionality of the CWS analyzer, described previously. The
OS/390 Web server has to be configured with a service directive in order to function with the CICS
WebServer Plugin. This configuration is described in the CICS Internet Guide , SC34-5445. Using this
service directive, the OS/390 Web server receives the HTTP request, builds an EXCI request, and
invokes the BLI using the CSMI mirror transaction in the target CICS region. The HTTP datastream is
passed to the BLI in the EXCI COMMAREA.

Figure 4 illustrates the major components of CICS Web support when using Web-aware presentation
logic via the CICS WebServer Plugin.

Figure 4: CICS Web support, with the CICS WebServer Plugin

The same facilities within CICS are available using the CICS WebServer Plugin as using a direct
connection, but there are a few important differences, which are summarized below:

l The OS/390 Web server and the CICS region must be running within the same OS/390 image or
Sysplex since the CICS WebServer Plugin uses the EXCI communication mechanism.

l Only 32 KB of data in the HTTP datastream can be passed to or from the CICS program when
using the CICS WebServer Plugin. This is because the EXCI uses a standard CICS COMMAREA
on which the restriction of 32 KB applies.

l Security processing can be performed in the OS/390 Web server if using the CICS WebServer
Plugin. Either HTTP basic authentication or SSL security can be configured.

l Data conversion is performed in the OS/390 Web server, not in CICS when using the OS/390
Web server.

For further information on using and configuring CWS with the CICS WebServer Plugin, refer to the
following manuals:

l CICS Transaction Server for OS/390 Version 1 Release 3: Web Support and 3270 Bridge , SG24-
5480

l CICS Internet Guide , SC34-5445

For information on configuring the OS/390 Web server, refer to:

l IBM HTTP Server for OS/390 Release 7 Planning, Installing, and Using, Version 5.1 , SC31-8690

1.2.4 3270 Web bridge

The 3270 bridge feature of CICS Web support provides turnkey access to 3270 transactions from the
Web. We will refer to this function as the 3270 Web bridge. To implement this solution, you need only
reassemble your BMS mapsets and add CICS PROGRAM and TRANSACTION definitions. The
resulting HTML is a GUI version of the original 3270 screen; this can be tailored if you want, but you
do not need to. Most 3270 transactions will then run unchanged using this technique, though some
applications may require modification. These restrictions are documented in chapter 8 of Revealed!
Architecting Web Access to CICS , SG24-5466. The ease of implementationmakes the 3270 Web bridge

the preferred solution whenever Web access is required quickly, programming resources are limited, or
the application has limited use or life expectancy.

The 3270 Web bridge can be used with either the direct connection to CICS or with the CICS
WebServer Plugin. Figure 5 illustrates the data flow for a Web browser request using the facilities of the
3270 Web bridge and a CWS direct connection to access a CICS 3270 transaction.

Note that the 3270 bridge feature is only available when using CICS TS V1.2 or a later release.

Figure 5: CICS Web support — 3270 Web bridge

The initial data flow is the same as that described in Figure 3 on page 8 for the description of CICS Web
support and the BLI. However, instead of invoking the user program, the Web terminal translation
program, DFHWBTTA, is invoked by the BLI. DFHWBTTA starts the transaction to be run in the 3270
bridge environment, where it runs in conjunction with the CICS provided Web bridge exit DFHWBLT.
A summary of the components of the 3270 Web bridge follows.

DFHWBTTA

This is the Web terminal translation program, it initiates execution of the transaction under the 3270
bridge feature of CICS. DFHWBTTA formats the input in the COMMAREA to the form in which the
3270 transaction named in the Web user's input will expect it, attaches the transaction for execution
under the bridge, and waits for it to complete.

DFHWBLT

This is the Web bridge exit and is used to control execution of the target transaction. When the 3270
transaction issues a 3270 RECEIVE, DFHWBLT supplies the input from the DFHWBTTA
COMMAREA. When the transaction SENDs, it stores the output there. When the 3270 transaction
running under the bridge ends, DFHWBLT notifies DFHWBTTA, which translates the 3270 output
from the transaction to the HTML equivalent and then returns to the alias program. The alias now
resumes standard CWI processing: It re-invokes the supplied converter program, this time to "encode"
the output into HTTP/HTML, invokes DFHCCNV for conversion to ASCII and the proper code page,
and returns the response to the Web browser.

Note there are several other sample bridge exits apart from DFHWBLT. These allow invocation from
other environments, including MQ, TS, or TD queues, or a CICS Business Transaction Services (CBTS)

environment. Refer to the redbook: CICS Transaction Server for OS/390 Version 1, Release 3: Web
Support and 3270 Bridge , SG24-5480, for further details.

State management

The program DFHWBST controls the state information required to manage 3270 pseudo-conversations
when using the 3270 Web bridge. This information is used by DFHWBTTA and DFHWBLT.

Garbage collection

The program DFHWBGB is responsible for "garbage collection". It runs at an interval controlled by the
SIT parameter WEBDELAY and purges state data associated with terminated 3270 Web transactions.

1.3 CICS Transaction Gateway
The CICS Transaction Gateway (CTG) is a set of server based software components that allows a Java
program to invoke services in a CICS region. The Java program can be an applet, a servlet, or a custom
Java application.

We describe the architecture of using the CTG with applets and servlets, but not applications, since they
have no specific architecture.

The CICS Transaction Gateway is available for production use on OS/390, and on the following
distributed platforms: AIX, Sun Solaris and Windows NT. It is also available for development use on
Windows 95 and Windows 98. A high level summary of how a CICS application can be Web-enabled
using the CTG is illustrated in Figure 6 .

Figure 6: CICS Transaction Gateway

When the CICS Transaction Gateway for OS/390 V3.1 is used, it is supported with CICS TS V1.2 and
V1.3. Note, however that if you wish to use the CTG V3.1 with CICS Transaction Server V1.2, the fix
for APAR PQ31270 must be applied to CICS Transaction Server. This does not apply to CICS
Transaction Server V1.3.

The OS/390 CICS Transaction Gateway, which is the subject of this performance study, consists of the
following components:

Java gateway application

l This long-running process is used to accept CTG requests issued from remote Java applications
such as applets.

Java class library

l This contains the following components
¡ Basic Java methods

These are used to set up connectivity to a CTG Gateway process or to invoke the underlying
CICS Universal Client or OS/390 EXCI.

¡ ECI Java methods

These methods provide access to CICS COMMAREA based programs in a similar fashion
to the CICS Universal Client ECI or the OS/390 EXCI.

¡ Java beans

These beans support development of applications from a number of Visual development
environments such as Visual Age for Java.

Also, the OS/390 CTG uses the function of the CICS EXCI to communicate with the target CICS
region. The function of the EXCI is used in the same way as the CICS Universal Client ECI would be
used on a non-OS/390 platform.

In addition, the following components are available on non-OS/390 versions of the CTG:

CICS Universal Client

l The CICS Universal Client provides communication to the CICS server.

EPI Java methods

l These methods provide a Java API to manipulate CICS 3270 based transactions.

Terminal Servlet

l This supplied servlet dynamically converts 3270 output into HTML for display at a Web browser.

Apart from manually coding the CICS CTG Java methods, you can develop a CTG application using the
IBM Common Connector Framework (CCF) Java Beans. We did not use the CCF in our CTG
performance test application; however, IBM's CCF does provides the following:

l A common client programming model for connectors. These interfaces allow VisualAge for Java's
Enterprise Access Builder (EAB) for transactions to easily build applets or servlets to access
programs or transactions in a CICS region.

l A common infrastructure programming model for connectors, which gives a component

environment, such as WebSphere, a standard view of a connector, and vice versa

When developing an applet or servlet using the CCF CICS connector, the CICSConnectionSpec,
CICSCommunication, and ECIInteractionSpec or EPIInteractionSpec classes are used. These classes can
be specified in an EAB Command with an input and output (COMMAREA) to invoke a CICS program.

For more information on developing CTG applications using the CCF, refer to the redbook: VisualAge
for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector , SG24-5265.

For product information on using the OS/390 CTG, refer to CICS Transaction Gateway for OS/390
Administration Version 3.1 , SC34-5528.

For information on configuring the CTG in different scenarios, refer to the redbook Revealed! CICS
Transaction Gateway with More CICS Clients Unmasked , SG24-5277.

The following sections will now review the major components of the OS/390 CTG and how the
architecture is different when using Java applets as opposed to Java servlets.

1.3.1 CICS Transaction Gateway applet architecture

Figure 7 shows an implementation of the CTG applet architecture on OS/390.

Figure 7: CICS Transaction Gateway applet architecture on OS/390

Web browser

This is a Java enabled Web browser. When a HTML page containing an applet tag is referenced, the
applet is downloaded from the Web server. The applet Java methods are then executed in the Web
browser JVM, and create a CTG network connection to the Java gateway application. This connection
can be one of the following protocols: TCP/IP, HTTP, SSL, or HTTPS.

Web server

The Web server serves up the HTML page, which contains the applet tag for the CTG applet, and also
serves this applet to the Web browser.

Java gateway application

This is a long running Java application that receives the remote ECI requests from the applet and, using

the Java Native Interface (JNI), invokes the EXCI to pass the ECI request to the CICS program.

Java class library

These Java methods are used by the applet to open a connection to the Java gateway application, and by
the Java gateway application to flow the ECI request to the CICS region.

1.3.2 CICS Transaction Gateway servlet architecture

Figure 8 illustrates the CTG servlet architecture on OS/390.

Figure 8: CICS Transaction Gateway servlet architecture on OS/390

Web browser

This is a standard Web browser that can send HTTP requests.

WebSphere Application Server

WebSphere Application Server for OS/390 provides both the OS/390 Web server (IBM HTTP Server)
and the servlet engine. The servlet runs within the JVM of the servlet engine, just as an applet runs
within a Web browser.

The servlet

The servlet is written using the CTG Java methods and is compiled and deployed ahead of time. It is
invoked by a request from the Web browser using either a URL, a HTML FORM, or a HTML server-
side include. The servlet uses used the CTG local: protocol to invoke the CICS EXCI libraries using the
Java Native Interface (JNI). The CTG ECI methods use the EXCI to invoke the CICS program, passing
the COMMAREA as input.

Java class library

This Java library contains a set of methods used by the servlet to invoke the EXCI using the facilities of
the JNI. The CTG Java methods are invoked within the servlet, and ECI requests are sent from the
servlet to the CICS region.

Note that no CTG Java gateway application is usually required in the servlet configuration. The Java
gateway application is only required when the CTG Java methods are executed in a JVM remote from
where the CTG is installed, as is the case with the applet architecture.

Chapter 2: Performance and capacity planning
factors
Overview
In this chapter we will discuss the various system components which contribute to performance
bottlenecks. We will also discuss ways to reduce some of these bottlenecks, and tell you where
additional information can be found.

What is a performance bottleneck?

A performance bottleneck is the component in a computer environment causing the highest level of
contention. This can be a system resource like CPU, memory, disk, the network, the client machine, or
the application. There is always a bottleneck, because some component will always be the slowest. The
question is whether this bottleneck is a problem to your application.

How to determine a performance bottleneck

There are some general guidelines which should be followed when identifying a performance
bottleneck. A standard approach should be used when determining where the performance bottleneck
exists. Reviewing CPU, memory, disk I/O, and network I/O, as represented in Figure 9 , is a
recommended approach.

Figure 9: Performance flowchart

Monitoring performance

When attempting to isolate a performance bottleneck, the importance of collecting and analyzing
performance data should not be overlooked. Attempting to resolve a performance bottleneck without

actual performance data can lead to making incorrect inferences about the source of a performance
bottleneck. Changing the configuration may have no impact on a performance bottleneck without first
understanding the source of the bottleneck. Using data collected by RMF, CICS statistics, Tivoli
Performance Monitor, and other tools will provide a set of concrete data to be used when isolating a
performance bottleneck.

Capturing performance data will also help to measure the affect of configuration changes on
performance. Without this data you will not be able to accurately assess the success of performance
tuning.

2.1 Hardware components influencing performance
In this section we will focus on the hardware components of a computer system which contribute to
performance bottlenecks. Section 2.2 , "Software components influencing performance" on page 26 will
address the software components of performance bottlenecks.

2.1.1 CPU

The CPU capacity that is available for use by CICS will have an impact on the performance of a CICS
region. In the sections ahead, we discuss some of the impactors to CPU performance.

Number of engines

In its simplest configuration, a central electronic complex (CEC) consists of a single processor (also
referred to as a CPU or engine). As workload increases, additional processors may be added to a CEC.
In order to take advantage of multiple processors, it must be possible for the workload to be divided into
concurrent activities. How CICS TS V1.3 enables the use of multiple processors is discussed in 2.2.1 ,
"CICS Transaction Server for OS/390" on page 26 later in this chapter.

Cryptographic Coprocessor feature

The Cryptographic Coprocessor feature is a hardware feature available on S/390 processors. It consists
of dual cryptographic module chips protected by tamper-detection circuitry and a cryptographic battery
unit. It can be used to off-load CPU processing from the main CEC processors when performing
cryptographic operations, and as such, can provide a significant reduction in CPU usage for both SSL
handshakes and SSL data transmissions. See Chapter 6 , "SSL with CWS" on page 85 for further details.

Total workload

In addition to the CICS workload, the workload of the entire CEC must be taken into consideration
when reviewing performance bottlenecks. The reason for a CICS performance bottleneck may be that
some other workload is using a higher than anticipated percentage of resources, thus limiting the
resources available for the CICS workload. RMF reports will indicate what system tasks are responsible
for use of excessive resources.

2.1.2 Storage

Not having enough storage available to a CICS region will result in high paging rates and often short-
on-storage (SOS) conditions, both of which can cause slow response times. Some of these issues are

discussed here; additional information can be found in the CICS Performance Guide , SC33-1699.

Paging

Paging occurs when there is not sufficient central storage to support all requests for storage within the
system. Performance monitor data should be reviewed to determine the paging rate for the CICS region.
A paging rate of less than one page-in per second from direct access storage device (DASD) is to be
preferred.

Paging between central storage and expanded storage is a fraction of the cost of paging to auxiliary
storage (DASD). The page-in operation is more costly than that of a page-out. A page-in operation is
processed synchronously by OS/390, which will temporarily halt any other CICS activity within the
region, while the requested data is loaded into central storage.

The maximum number of CICS tasks can affect the amount of storage that a CICS region is requesting.
The maximum task (MXT) system initialization table (SIT) parameter controls the number of tasks
within a CICS region. If paging is a performance bottleneck, a review of the CICS statistics will show
the value for MXT and the number of times that a CICS region has reached maximum tasks. By
reducing MXT, the demand for storage is less, which may in turn reduce the amount of paging and may
increase throughput due to the reduced paging rate.

The CICS Performance Guide , SC33-1699, discusses the impact of paging on CICS performance.

CICS storage

CWS uses temporary storage queues to store inbound HTTP requests and outbound responses built by
the WEB API. A sample temporary storage queue definition exists in the DFHWEB group. The supplied
sample uses main temporary storage in order to reduce the amount of I/O to auxiliary storage. You
should consider the placement of temporary storage based upon the storage available to your CICS
region.

The Transaction Isolation (TRANISO) SIT parameter also impacts how CICS allocates storage. A CICS
region running with TRANSIO=YES will allocate user requested storage above the 16 MB line in 1 MB
blocks. This means the amount of storage requested by a CICS region may be very large. This will
impact the amount storage requested by a CICS region.

The LE runtime options that are in effect also impact how storage is allocated within a CICS region. LE
options such as ALL31 and STACK can have a dramatic impact on storage requirements. For a detailed
description of LE options, see OS/390 LE Installation and Customization Guide , SC26-4817. The
RUWAPOOL, SIT parameter will also impact how CICS allocates LE storage. Additional information
on the impact of LE options and RUWAPOOL are found in the CICS Performance Guide , SC33-1699.

2.1.3 Disk I/O

Disk I/O can contribute to performance bottlenecks due to the longer response times involved in
accessing data from disk than from memory. Ensuring that disk I/O traffic is optimized minimizes the
amount of time spent waiting for DASD operations to complete. In addition to monitoring and tuning
DASD performance, the use of advanced storage technology, such as IBM's Enterprise Storage Server
offer greater levels of performance and scalability which aid in eliminating DISK I/O as a performance
bottleneck. Information about the latest storage technology available can be found in:

l http://www.storage.ibm.com

Data set management

The goal of data set management is to minimize DASD operations. When using CICS with VSAM, this
can be accomplished by increasing the number of VSAM hiperspace buffers, and by the use of CICS
Data Tables, both of which will minimize disk I/O. By minimizing VSAM CI/CA splits and performing
DASD subsystem tuning, other DASD operations will be minimized. Ensuring that DASD operations
such as channel busy, device busy, and seek times are at appropriate values for your DASD subsystem
helps reduce response times. The CICS Performance Guide , SC33-1699, has guidelines for DASD
tuning.

2.1.4 Network I/O

In the case of Web-enabled CICS transactions, you have two possible classes of network I/O to
consider: your private network, and the public Internet.

Your private network

This term private network may mean different things, depending on your specific network configuration.
It may be an intranet, an extranet, or some other network configuration. But, it is a network over which
you have some direct control. Points of potential performance bottlenecks within your network include
the CEC network adapter, bridges, routers, and other components within the network infrastructure.

Network adapter

Ensuring that your CEC has ample bandwidth to connect to the network is an important point to review
in order to avoid this performance bottleneck. Sizing of the Open Systems Adapter (OSA) should be
performed to ensure that adequate bandwidth exists. The OSA is a hardware feature which provides
direct connection from a CEC to the LAN. OSA supports a variety of network topologies at different
speeds. Refer to Planning for the System/390 Open Systems Adapter Feature , GC23-3870, for
additional information on the setup of OSA cards.

Network infrastructure

The components of your network are also potential bottlenecks. Ensuring that there is adequate capacity
for your CEC and the clients on your network will eliminate this as a bottleneck. The importance of the
network to your total performance cannot be stated strongly enough. As you migrate towards a Web-
centric environment, away from a 3270 green screen environment, you need to model the impact to the
network infrastructure. The 3270 data streams on the network are less traffic-intensive than the Web-
based network traffic. Network performance is a unique experience, and every network may behave
differently under similar loads. By using tools such as Tivoli, you can determine if some component
within your network is a performance bottleneck. You then can develop a plan to address this
bottleneck.

The public Internet

It is also possible that the Web-enabled CICS application that you have built is accessed across the
public Internet as a part of your company's e-business strategy. If this is the case, then you may not have
much control over the overall performance of your customer's connection to your application. This does

http://www.storage.ibm.com

not, however, remove the Internet as a potential bottleneck.

Your Internet service provider should be able to address your specific needs. For our purposes, we will
be assuming that you have sufficient capacity in order to eliminate the Internet as a performance
bottleneck.

2.1.5 Client configuration

While the sizing of the client machine is beyond the scope of this redbook, it is a notable part of the total
application architecture and should not be overlooked. When isolating performance bottlenecks, the
same issues apply to the client machine as are discussed in this chapter. Depending on which approach
you use to Web-enable access to CICS, the role of the client machine and the processing requirements
for the client machine will vary. A client that is used primarily as a Web browser will have lighter
processing demands than a client machine that will be running Java applets. Understanding the role of
the client machine within your application architecture will help you to eliminate the client machine as a
performance bottleneck.

2.2 Software components influencing performance
In addition to the hardware components which influence performance, as discussed in the last section,
software also has an impact on performance.

As part of ensuring that your CICS system and other software is running optimally, you should attempt
to keep current on maintenance. While it may not always be possible to be running the latest release of
maintenance, there are often significant performance enhancements available through maintenance.

2.2.1 CICS Transaction Server for OS/390

CICS Web support (CWS) is a fully integrated service within CICS TS V1.3. CICS TS V1.3 has
expanded the CICS domain structure to include a separate domain for CICS TCP/IP socket requests.
CICS TS V1.3 has also extended the API to provide the WEB API and DOCUMENT API, to support
the CWS and HTML template processing. See the CICS Transaction Server, Migration Guide , GC34-
5353 for more information.

Multiple TCBs

Since CICS TS V1.3 has a multi-domain design, it dispatches multiple TCBs, and thus it is able to
concurrently utilize multiple processors in a multi- processor CEC. The business logic, however, still all
runs within the QR TCB, and therefore is not dispatched across multiple processors. Further details on
CICS usage of multiple TCBs and how to use CICS dispatcher statistics to analyze TCB usage is given
in 8.3 , "Using too much CPU" on page 146 .

2.2.2 The OS/390 Web server

Tuning the OS/390 Web server for peak performance involves reviewing OS/390 UNIX System
Services tuning guidelines. Reducing program loads can be done by ensuring that the UNIX service
modules are in LPA and that Web server libraries are in the linklist or LPA. Thus, you will reduce
response times for Web requests. Performance can also be improved by using the CacheLocalFile
directive or Fast Response Cache Accelerator to pre-load frequently referenced Web pages, or by using

the LE runtime option HEAPPOOLS(ON). It is also important that you do not start the OS/390 Web
server from a UNIX shell, otherwise the performance specifications of the UNIX shell will be inherited
by the Web server address space.

It is possible to run the OS/390 Web server in three modes:

l Standalone mode is best suited for test environments and a small number of connections.

l Scalable mode works in conjunction with WLM, which can improve OS/390 Web server
performance by dynamically dividing work between multiple queues based on WLM settings.

l Multiple mode allows you to run multiple instances of the OS/390 Web Server on different ports.

Refer to http://www.s390.ibm.com/oe/bpxa1tun.html and IBM HTTP Server for OS/390 Release 7
Planning, Installing, and Using , SC31-8690, for details about performance tuning the OS/390 Web
server.

2.2.3 eNetwork Communications Server

Each subsequent release of eNetwork Communications Server has had significant performance
enhancements over the prior release. You should review your current version and maintenance level of
TCP/IP before you begin to implement Web-enabled CICS applications. In the latest releases of
eNetwork Communications Server, TCP/IP shares services with VTAM, such that CPU time for TCP/IP
requests is charged to both the TCP/IP and VTAM address spaces.

Reviewing the eNetwork CS IP Configuration , SC31-8513, to ensure that you have selected appropriate
TCP/IP tuning parameters, is also important. In the most recent version of TCP/IP, the number of tuning
parameters is reduced. Setting the TCP/IP TCPSENDBfrsize and TCPRCVBufrsize to appropriate sizes
for the largest data size that you expect to should be reviewed.

The SOMAXCONN parameter controls the number of concurrent connections. This parameter should
be reviewed to ensure that it is in line with CICS parameters, such as TCPIPSERVICE BACKLOG.

2.2.4 HTTP

CICS TS V1.3 supports HTTP 1.0 requests and responses and the HTTP 1.0 KeepAlive extension,
which offers persistent HTTP connections. Chapter 5 , "CWS with Web-aware presentation logic" on
page 65 discusses the affect of using persistent connections. Unpredictable results may occur if you use
HTTP 1.1 specific headers.

CICS TS V1.3 has extended the EXEC CICS API to include a new set of WEB commands. These
commands are used in CWS Web-aware programs to send, receive, and manipulate HTTP data within a
CICS application. The redbook CICS Transaction Server for OS/390 Version 1, Release 3: Web Support
and 3270 Bridge , SG24-5480, further describes the WEB API and support of HTTP.

2.2.5 Java

It is important that your system is running at the highest maintenance levels available for Java and
related Java support. Java support is a rapidly evolving area, and remaining current on support will
provide the most efficient performance. LE runtime options can also have a major impact on storage

http://www.s390.ibm.com/oe/bpxa1tun.html

usage and CPU utilization. The key LE runtime options for Java are STACK, HEAP, and ANYHEAP.
Setting the values for these options too small may cause additional GETMAIN of storage, which will
also increase CPU consumption. Setting LE runtime options too large will allocate an excessive amount
of storage, which may result in SOS conditions. Chapter 7 , "The OS/390 CTG" on page 103 in this
redbook, and the CICS Performance Guide , SC33-1699, describe Java performance considerations in
greater detail.

2.2.6 Client configuration

While the specifics of the client environment are not addressed in this redbook, you should understand
what impact your particular client configuration has on performance. Not all software configurations
will behave the same way under all circumstances. Be aware of the releases of software and what the
impact of migrating from one release to another has on the performance of your application architecture.
It is also possible that you will not have complete control over all aspects of the client configuration.
Products such as Tivoli Performance Monitor can help with maintaining client configurations.

2.3 Workload management
Once you have set performance goals, Workload Management (WLM) works automatically to maintain
those goals. The manuals, MVS Planning: Workload Management , GC28-1761, and CICSPlex: SM
Concepts and Planning , GC33-0786, discuss setting up WLM in detail.

The following benefits are gained through the use of WLM:

l Improved performance through the use of MVS resource management

l Simplified MVS tuning

l The ability to integrate workload balancing for terminal-initiated transactions, non-terminal-
initiated transactions, External CICS Interface (EXCI) clients, CICS clients, CICS Web support,
CICS Transaction Gateway, IIOP, and started tasks

l The ability to integrate CICS Business Transaction Services processes and activities fully into the
workload separation and workload balancing functions

l Optimum performance and response times for a variable and unpredictable workload

l Work routed away from a failing target region to an active target region

l Opportunities for increased throughput and improved performance

l Reduced risk of bottlenecks

l Less operator intervention

2.3.1 OS/390 Sysplex environment

The OS/390 Sysplex environment enables parallel processing, which allows processing on multiple
S/390 CECs to occur concurrently.

2.3.2 Workload balancing

2.3.2.1 TCP/IP port sharing

TCP/IP port sharing provides a simple way of spreading workload over multiple CICS regions in one
CEC by allowing multiple CICS regions to listen on the same TCP/IP port number.

The TCPIPSERVICE CICS resource definition controls which port a CICS region will listen for
incoming requests; this is further described in the CICS Resource Definition Guide , SC33-1684-02.

The SHAREPORT parameter of the PORT TCP/IP configuration statement is used to define the names
of all of the CICS regions which may listen on a particular port. TCP/IP port sharing requires eNetwork
Communications Server in OS/390 Version 2 Release 5 or later. For more information, see OS/390
eNetworks Communications Server: IP Configuration , SC31-8513.

2.3.2.2 Dynamic DNS

With dynamic domain name server (DNS), multiple CICS systems are started to listen for requests on
the same port, using Virtual IP addresses. The host name in the request is resolved to an IP address by
MVS DNS and WLM services. By using dynamic DNS you are able to spread incoming requests across
multiple CICS regions that are running anywhere within a sysplex.

Implementing dynamic DNS is discussed in OS/390 V2R7.0 eNetwork Communications Server IP
Configuration , SC31-8513.

2.3.2.3 SecureWay Network Dispatcher

IBM SecureWay Network Dispatcher manages TCP/IP traffic by allowing you to balance the load
across servers of different sizes and different operating systems. The Web site:
http://www.ibm.com/software/network/dispatcher/ has additional information about the use of the
SecureWay Network Dispatcher.

2.3.2.4 CICSPlex System Manager

CICS TS V1.3 provides extensions to CICSPlex System Manager (CPSM) which supports the dynamic
routing of requests for:

l CICS Web support (CWS)

l CICS Transaction Gateway (CTG)

l External CICS interface (EXCI) client programs

l Any CICS client workstation product using External Call Interface (ECI)

l Internet Inter-Object Request Block Protocol (IIOP)

l Any function that issues a CICS LINK request

Dynamic routing provides the ability to balance a workload among multiple CICS regions. CICSPlex:

http://www.ibm.com/software/network/dispatcher/

SM Managing Workloads , SC33-1807, describes the implementation of workload balancing using
CPSM.

2.4 Capacity planning
Capacity planning is an ongoing activity. Review of performance data and an understanding of the affect
of changes to the environment need to be understood so that new workloads can be modeled and their
impact on the current environment understood before implementation in a production environment.
Changing how a business process is performed may stress available system capacity beyond available
limits. Capacity planning involves the review of performance data from many disciplines, OS/390,
DASD management, network administration, application design, CICS, and other platforms. The
redbook OS/390 MVS Parallel Sysplex Capacity Planning , SG24-4680, and the CICS Performance
Guide , SC33-1699, discuss capacity planning in detail.

2.4.1 LSPR ratios

IBM markets a large range of computers, now more usually known as Central Electronic Complexes
(CECs), with widely differing processing capacities or "powers". Performing a capacity planning
exercise often involves the need to translate estimated or measured performance values from one model
of CEC to another. For example, a customer upgrading his machine to a larger model will often want to
estimate the cost of running an existing application on the new CEC, and will base this estimate on in-
house measured costs on his current machine, and then project or translate them to the proposed new
machine. Similarly, a customer adding a new application to an existing machine may have to base his
capacity planning estimate on available IBM performance data measured on a different model than his
current CEC, and needs a way of coping with the differences in machine in the estimation process.

To facilitate this translation between CEC models, IBM provides the Large System Performance
Reference (LSPR) tables. These are accessible on the Internet at
http://www.s390.ibm.com/lspr/lspr.html . The tables are updated at regular intervals, and cover IBM,
Amdahl, and HDS machines, and OS/390, VM, and VSE operating systems.

The LSPR method, and the tables based on it, operate in the following manner. One CEC model is
defined as the LSPR reference or base machine in performance terms. This base machine is rarely
changed, and you can expect the same base machine to be used for quite a few years. The base machine
is currently defined as the IBM 9672-R15, which is a single processor air cooled machine based on
CMOS technology.

IBM has defined, for LSPR purposes, several separate workloads based around each of their principle
mainframe software products. For example, there is a typical IMS workload, and a typical TSO based
workload, and, of most interest for our purposes, a typical CICS/DB2 workload. Each of these
workloads is run on every machine in the LSPR tables, and, in simple terms, a measurement of the
amount of CEC processing time required to run each workload is made for each CEC model.

These CEC processing times are then compared to the cost of running the same workload on the base
9672-R15 CEC, and the comparisons are presented in the LSPR tables as a series of indices or ratios.
These ratios are in essence, for a given workload, an indication of the relative processing power of the
particular CEC, and are a measure of the rate at which it can execute machine instructions, compared
with the LSPR base CEC. The LSPR base CEC always takes the ratio value 1.0 for each workload, and
all the LSPR table values for all the other CECs are relative to this. A ratio value of greater than 1.0
indicates a more powerful CEC than the base 9672 R15, and a ratio of less than 1.0 indicates a less

http://www.s390.ibm.com/lspr/lspr.html

powerful CEC. A selected range of the LSPR ratios for the defined CICS/DB2 workload are shown
below in Table 1 . Note that the number of processors that a particular CEC model has is given within
the LSPR tables in the column marked # CP .

Table 1: Selected LSPR ratios for CICS

So, for example, the tables indicate that, for the CICS/DB2 workload, the LSPR ratio for a 9672-R25 is
1.81, indicating that the 9672-R25 is a more powerful CEC than the LSPR base machine, the 9672-R15.
This is because the 9762-R25 has two processors and the 9672-R15 has one. Thus, theoretically, the R25
is capable of executing twice as many machine instructions per unit time as the R15. However, you will
note that for the R25, the LSPR ratio is 1.81 and not 2.0; this is because of a decrease in efficiency
involved in the very nature of multi-processing. In general, this reduction in efficiency increases as the
number of processors in a CEC increases, and this is reflected in the LSPR table values. So, for the
9672-R55, which is the five processor version of the same CEC series, the CICS/DB2 workload LSPR
ration is 4.22 as opposed to 5.

2.4.2 CPU speed considerations

However, when capacity planning with CICS, you must also consider the speed of the individual CPUs
used in your CEC. This is because CICS still makes extensive use of a specific TCB, the QR TCB, and
it may be that your CICS system is reaching maximum capacity of that TCB, thus limiting your
maximum CICS CPU utilization to just one CPU in the CEC. More details on how to do this is given in
8.3 , "Using too much CPU" on page 146 .

To increase the capacity of a single CICS region in this condition, it would be necessary to move to a
CEC with a more powerful CPU (for instance, moving from a 9672-R55 to a 9672-R56). Moving to a
CEC with more processors, such as from a 9672-R55 to a 9672-R65, may give greater total
computational power, but this does not provide a higher individual CPU speed, which would be the
limiting performance factor for the CICS region in this situation.

Part 2: Performance analysis
Chapter List
Chapter 3: The 3270 green screen Trader application
Chapter 4: CWS with the 3270 Web bridge

Processor Model # CP CICS/DB2 LSPR
9672-R15 1 1.00
9672-R25 2 1.81
9672-R35 3 2.58
9672-R45 4 3.30
9672-R55 5 4.22
9672-R65 6 4.88
9672-R75 7 5.48
9672-R16 1 2.03

Chapter 5: CWS with Web-aware presentation logic
Chapter 6: SSL with CWS
Chapter 7: The OS/390 CTG
Chapter 8: Conclusions and recommendations
Chapter 9: CICS Web capacity planning example

Chapter 3: The 3270 green screen Trader
application
Overview
In this chapter we describe the application that will be used in the capacity planning studies presented in
subsequent chapters. Like the majority of applications used on CICS systems today, it is written in
COBOL and uses the 3270 Basic Mapping Support (BMS) interface of CICS to provide a menu-based
user interface for 3270 devices. Such applications are often referred to as legacy applications. The
program design employed in such legacy applications is often hierarchical, navigating through levels of
menus. Because they were designed to run on monochrome (green characters on a black background)
3270 devices, they were commonly referred to as "green screen" applications.

The huge numbers of CICS COBOL applications developed to run on 3270 devices produced a wide
variety of program structures and programming styles. Very often these programs contain a mixture of
business logic and 3270 BMS presentation logic. It has been a recommended approach for some time to
separate business and presentation logic, particularly because applications developed in this way can be
readily used in a client/server environment. It also makes it simpler to extend such applications to
exploit access from the Web.

3.1 Introducing the Trader application
Our sample green screen application is called Trader. Trader allows authenticated users to trade shares,
that is to buy and sell shares in a given group of companies, as well as obtaining real-time quotes on the
value of their current holdings. Trader has been developed as a sample as part of an IBM CICS Web-
enablement service offering. Sample code and templates required to Web-enable the Trader using all of
the technologies documented in this redbook are available as additional materials from the ITSO Internet
site http://www.redbooks.ibm.com . We will be using Trader as our sample application throughout this
redbook for our CICS Web-enablement performance study and capacity planning exercises.

Trader is written in COBOL. It uses the VSAM access method for file access and the CICS 3270 BMS
programming interface. It is a pseudo-conversational application, meaning that a chain of related non-
conversational CICS transactions is used to convey the impression of a "conversation" to the user as he
goes through a sequence of screens that constitute a "business transaction". A non-conversational CICS
transaction has one input and one output, so no task waits for user input as the user examines a screen
and enters responses into it. CICS provides several facilities for passing information about the current
state of the business transaction forward from one task to another. The most commonly used is the
COMMAREA data structure which can be associated with the terminal.

At each step the application presents a set of options. The user makes a choice, then presses the required
key in order to send their selections back to the application. The application performs the necessary

http://www.redbooks.ibm.com

actions based on the user's choice and presents the results together with any possible new options. The
application has a strict hierarchical menu structure which allows the user to return to the previous step
by using the PF3 key. The application consists of two modules TRADERPL, which contains the 3270
presentation logic, and TRADERBL, which contains the business logic.

3.1.1 Basic application structure

Figure 10 shows a summary of the flow of CICS tasks for our chosen "business transaction" to perform
a simple stock update operation. For the ten steps indicated, the following ten separate CICS tasks will
run:

1. The initial CICS transaction identifier (TRAD) is entered; this invokes the TRADERPL program,
which calls TRADERBL to build a list of companies for use in the next step. TRADERPL returns
the signon display.

2. A userid and password is entered and verified. TRADERPL then returns the company selection
display.

3. A company is selected, and TRADERPL returns the main options display.

4. Option 1 for a New Real-Time Quote is entered. TRADERPL calls TRADERBL, which reads the
company and customer files. TRADERPL then returns the real-time quote display.

5. PF3 is pressed to exit back to the main options display, invoking only TRADERPL to send that
display.

6. Option 2 for Buy Shares is entered, and TRADERPL is invoked, which returns the buy shares
display.

7. The number of shares to purchase is entered. TRADERPL calls TRADERBL which reads the
company file and updates the stock holding in the customer file. TRADERPL then returns the
main Options display.

8. Option 1 for a New Real-Time Quote is entered (as in step 4). TRADERPL calls TRADERBL,
which reads the company and customer files. TRADERPL then returns the real-time quote
display.

9. PF3 is pressed to exit back to the main options display.

10. PF12 is pressed; the application terminates by TRADERPL sending a final SEND TEXT message
to the screen on completion.

Figure 10: 3270 Trader application summary

3.1.1.1 Detailed application flow

In this section we describe the Trader application in more detail:

1. The program TRADERPL is invoked on a 3270 capable terminal by entering the initial CICS
transaction identifier (TRAD). TRADERPL calls TRADERBL, passing an inter-program
COMMAREA of 400 bytes. TRADERBL expects the COMMAREA to contain a request type and
associated data. There are 3 request types: Get_Company to return a company list, Share_Value to
return a list of share values, or Buy_Sell to buy or sell shares. In this step the request type is
Get_Company .

When TRADERBL receives a Get_Company request, it browses the company file and returns the
first four entries to TRADERPL. At this point the user has not entered any request, but the
application assumes that a Get_Company request will be following. TRADERPL then sends the
signon display (T001 shown in Figure 11), which prompts for a userid and password. The list of
companies is stored in the COMMAREA associated with the terminal when the TRAD transaction
ends, so that it will be available at the next task in the pseudo-conversational sequence.

 Share Trading Demonstration TRADER.T001

 Share Trading Manager: Logon

 Enter your User Name:

 Enter your Password:

PF3=Exit PF12=Exit

Figure 11: Trader signon display

2. The next transaction invokes TRADERPL, which receives the signon display (T001) and the
saved COMMAREA from step 1. Using the company data acquired in step 1, TRADERPL sends
the company selection display (T002, shown in Figure 12), the format of which is shown in
Figure 12 . TRADERPL then returns, specifying the next transaction to run and the associated
COMMAREA.

 Share Trading Demonstration TRADER.T002

 Share Trading Manager: Company Selection

 1. Casey_Import_Export

 2. Glass_and_Luget_Plc

 3. Headworth_Electrical

 4. IBM

 Please select a company (1,2,3 or 4) :

--
PF3=Return PF12=Exit

Figure 12: Company selection display

3. The user selects the company to trade from the Company Selection display, and presses Enter. The
program TRADERPL is invoked and sends the Options display (T003, shown in Figure 13) to the
terminal. The user can now decide whether to buy, sell, or get a new real-time quote. TRADERPL
returns, specifying the next transaction to run and the associated COMMAREA.

 Share Trading Demonstration TRADER.T003

 Share Trading Manager: Options

 1. New Real-Time Quote

 2. Buy Shares

 3. Sell Shares

 Please select an option (1,2 or 3):

PF3=Return PF12=Exit

Figure 13: Options menu display

4. In the flow of our business transaction, the user then selects Option 1 and presses Enter.
TRADERPL is invoked and determines that the user's request is a Share_Value request type.
TRADERPL calls TRADERBL, passing the request type and the company selected earlier.
TRADERBL reads the customer file to determine how many shares are held, then reads the
company file to determine the price history, and returns the information to TRADERPL.
TRADERPL uses this data to build a Real-Time Quote display (T004) as illustrated in Figure 14 .
This display shows the recent history of share values for the company chosen, the number of
shares held with this company, and the total value of these shares. TRADERPL returns, specifying
the next transaction to run and the associated COMMAREA data.

 Share Trading Demonstration TRADER.T004

 Share Trading Manager: Real-Time Quote

 User Name: TRADER

 Company Name: IBM

 Share Values: Commission Cost:
 NOW: 00163.00 for Selling: 015
 1 week ago: 00157.00 for Buying: 010
 6 days ago: 00156.00

 5 days ago: 00159.00
 4 days ago: 00161.00
 3 days ago: 00160.00
 2 days ago: 00162.00 Number of Shares Held: 0100
 1 day ago: 00163.00 Value of Shares Held: 000000000.00

PF3=Return PF12=Exit

Figure 14: Real-time quote display

5. The user now presses PF3 to go back to the options menu . TRADERPL is invoked and sends the
Options display (T003) to the terminal (repeating the actions of step 3) and returns, specifying the
next transaction to run and the associated COMMAREA data.

6. The user now requires to purchase shares, so selects option 2 and presses the Enter key. Program
TRADERPL receives map T003 and determines that the user wants to buy shares, and sends the
Shares-Buy display (T005) shown in Figure 15 . TRADERPL returns, specifying the next
transaction to run and the associated COMMAREA.

 Share Trading Demonstration TRADER.T005

 Share Trading Manager: Shares - Buy

 User Name: TRADER

 Company Name: IBM

 Number of Shares to Buy: 100

PF3=Return PF12=Exit

Figure 15: Shares — Buy display

7. Program TRADERPL receives the T005 screen and builds a Buy_Sell request COMMAREA
which is passed to program TRADERBL. TRADERBL reads the company file and then performs
a READ for UPDATE and REWRITE to the customer file to update the customers share holdings.
The success of the request is returned to TRADERPL in the COMMAREA, and TRADERPL
sends the Options display (T003) reporting the successful buy to the user. TRADERPL returns,
specifying the next transaction to run and the associated COMMAREA.

8. Next the user checks his shareholdings by repeating step 4.

9. The user returns to the options screen by repeating step 5.

10. The business transaction is completed by the user pressing PF12, which performs a SEND TEXT
to write a message to the terminal reporting the session is complete. TRADERPL then executes
the final RETURN command. No COMMAREA is specified because the pseudo-conversation is
over and there is no conversation state data to retain.

3.1.2 Application characteristics influencing performance

Let us now look at the different characteristics of the Trader application influencing performance. The
Trader application is modular and well structured, in that the presentation logic (3270 and BMS
commands) is in a separate module to the business logic. Thus we can examine the factors influencing
presentation logic costs and business logic costs separately.

3.1.2.1 Presentation logic

These are the factors that will affect CPU usage in the presentation logic:

Number of network I/O operations

l The number of network I/O operations is related to the number of SENDs and RECEIVEs (both
BMS and native 3270 commands). For our particular business transaction sequence illustrated in
Figure 11 on page 40 , we have nine pairs of BMS maps received and sent, and a BMS RECEIVE
with a 3270 SEND in the final transaction. These costs will be partly incurred in CICS and partly
in VTAM.

State management

l Running multiple pseudo-conversational transactions requires a degree of state management by
CICS. State data, covering the "state" of the terminal and any user-specific data areas (commonly
in a COMMAREA or in a CICS Temporary Storage queue) is stored in memory managed by
CICS. Thus an increasing number of users will require an increasing amount of memory to be
allocated. This memory is primarily stored in the CICS extended dynamic storage areas (EDSA)
and should be considered when configuring the SIT EDSALIM option for the CICS region.

3.1.2.2 Business logic

Now we will look at the factors affecting business logic CPU usage.

Business logic CPU usage

l The business logic in the Trader application is that portion of the application that gets the
information, and processes changes that the user requests, including file access and update. In our
example it can be easily quantified using CICS monitoring facilities. CICS monitoring data can be
used to determine the CPU utilization of each CICS task. The presentation logic of each task is
very similar, and therefore this part of CPU cost is essentially constant across all tasks. It equals
the cost of a task that does not execute any business logic, such as step 2. Hence we can determine
the cost of the business logic in each step, by subtracting the cost of a task that does no business
logic, from the total for a task that does execute business logic.

Number of disk I/O operations

l An increase in transaction rate may create excessive demands on the I/O subsystem and it may not
be able to match the rate of increase of requests. If this happens, CICS will be unable to service
higher transaction rates as tasks wait for a response from the I/O subsystem. When running many
user requests in parallel, there will of course be an increasing number of I/O operations to files.
The efficiency of performing I/O operations may decrease as the rate of requests increases, due to
the limited bandwidth inherent in any physical I/O device, and to the serialization and locking
required when updating recoverable resources.

Serialization characteristics (enqueue/dequeue)

l If the Trader application uses a recoverable file, then the update operation results in an implicit
enqueue/dequeue. Under an increased load this could lead to an I/O bottleneck, as transactions
queue waiting to update the file.

3.2 Measured CPU usage
In order to understand the CPU cost of running the 3270 version of the Trader application, we undertook
a number of CPU measurements to get a baseline from which to estimate the delta costs of different
methods of Web-enabling the Trader application.

First we measured the CPU usage for running one Trader business transaction, as described in Figure 10
on page 39 . This was undertaken using CICS monitoring. The results are shown in Table 2 .

Table 2: CPU costs from CICS monitoring for 3270 Trader application

All numbers represent CPU milliseconds consumed by the CICS address space when running on an IBM
9672-R55 processor. The business logic component is effectively the path-length in program
TRADERBL and the presentation logic is that in TRADERPL

From these numbers, we can see that when using the 3270 version of Trader, the majority of the CPU
cost (68%) occurs in the business logic, and these costs are dominated by the CICS tasks that perform

CICS task Presentation logic (CPU ms) Business logic (CPU ms) Total (CPU ms)
1 0.8 4.1 4.9
2 0.8 0.0 0.8
3 0.8 0.0 0.8
4 0.8 4.1 4.9
5 0.8 0.0 0.8
6 0.8 0.0 0.8
7 0.8 4.8 5.6
8 0.8 4.1 4.9
9 0.8 0.0 0.8
10 0.8 0.0 0.8

Totals 8.0 17.1 25.1

file I/O operations.

With the scalability offered by CICS, these costs should increase in a linear fashion when running many
user sessions in parallel. To verify the scalability of the Trader application, a workload consisting of
instances of the Trader business transaction sequence was generated using the Teleprocessing Network
Simulator (TPNS); and the CPU consumed by CICS, VTAM, and the overall total were measured using
RMF monitoring. RMF monitoring records the CPU charged to each address space, along with the total
used in the whole OS/390 system.

These costs are documented in Table 31 on page 170 and illustrated graphically in Figure 16 . The
figures plotted are the % usage of a single R55 CPU with a maximum of 500% available. The CPU
usage for the CICS and VTAM address spaces, along with the total CPU of the OS/390 system are
plotted. In Figure 17 we plot the CPU cost in ms per transaction, against increasing workloads, in order
to illustrate the scalable nature of 3270 CICS transactions.

Figure 16: 3270 Trader workload, throughput vs. CPU usage

Figure 17: 3270 Trader workload, throughput vs. CPU ms/transaction

From Figure 17 it can be seen that the Trader workload scales very efficiently, and the CPU cost per
transaction actually falls slightly as the throughput increases. This is due to the efficiencies gained at
higher throughputs. It can also be seen that the proportion of CPU time spent in VTAM is consistently
very low (approximately 2% of the total CPU used on the OS/390 system).

Using the plot in Figure 16 we produced a linear fit equation to calculate the CPU cost of the Trader
application based on a given throughput.

A linear fit equation is of the form (y = k1 * x + k2). It predicts the value of y (in our case, CPU usage)
based on the value of x (in our case throughput) and two constants, k1 and k2. The constant k1 is an
indication of the slope and k2 the y-axis intercept. The degree of fit is reported by the R-square value, a
value of 1.0 indicating a perfect fit. We use several linear fit equations throughout this study, all of
which were produced using the Series Trend function in Lotus 1–2–3.

The linear equation for predicting the CPU cost of the 3270 Trader application is given in Figure 18
along with the predicted cost for a throughput of 10 business transactions per second. The R-square
value for this equation was 0.994. Note that we will continue to use a throughput of 10 business
transactions per second in all our capacity planning estimations later in this redbook.

Total CPU used in OS/390 system when running Trader:

 Total CPU ms = (31.5 * throughput) + 137

Thus at a throughput of 10 business transaction/second:

 Total CPU ms = (31.5 * 10) + 137 = 452 CPU ms

Throughput = business transactions per second

Figure 18: Linear equations for 3270 Trader CPU usage

You should note that the figures reported by CICS monitoring (Table 2 on page 45) for one Trader
business transaction (25.1 CPU ms) are considerably less than the CPU usage per transaction in Figure
17 on page 47 (approximately 35 CPU ms). This is because the figures for CICS monitoring do not
include general overhead of running the CICS region, just the individual costs associated with invoking
a specific program.

Of this total 452 ms for running Trader using the 3270 interface, we can calculate how much should be
allocated to the different OS/390 components. We do this by using the relative proportions reported for
each component in our test measurements, as found in Table 31 on page 170 . The throughput of 10.6
business transactions/second was chosen, as it is the closest to our defined rate of 100 CICS tasks per
second. This calculation is illustrated in Table 3 .

Table 3: CPU percentage breakdown for Trader via 3270 Web bridge

Component Percentage of total per
component

CPU usage for 10 business transactions (CPU
ms)

CICS total 76.9% 348
VTAM 10.0% 10
OS/390
other 20.7% 94

3.3 Trader performance
Using the results of our performance tests from Table 3 on page 48 we have plotted the CPU usage for
each component when running the 3270 Trader application. This is shown in Figure 19 ; the figures
plotted are CPU ms on an 9672-R55, for running 10 invocations of the Trader business transaction. Thus
10 Trader business transactions equate to 100 CICS tasks when using 3270 green screens.

Figure 19: Breakdown of CPU usage for 3270 Trader application

Chapter 4: CWS with the 3270 Web bridge
Overview
In this chapter we discuss the Web-enabling of the Trader application using the 3270 bridge function of
CICS Web support (CWS). We will refer to this function as the "3270 Web bridge". We then present a
set of performance studies of a simple 3270 test application Web-enabled via the 3270 Web bridge, and
go on to use this information to perform capacity planning for Web-enablement of the Trader
application.

4.1 Converting the Trader application
The 3270 Web bridge allows for the Web-enablement of existing CICS 3270 applications with little or
no change to the original 3270 based application. In the case of the Trader application, no changes were
required to the presentation or business logic, as all the commands used were compatible with the
restrictions imposed by the 3270 Web bridge. For further details on what changes may be necessary to
an application, refer to Revealed! Architecting Web Access to CICS , SG24-5466.

4.1.1 Basic application structure

The Trader application consists of seven BMS maps. All BMS maps were converted to HTML
templates by reassembling the BMS source with the BMS TEMPLATE option provided as part of CWS.
This provides a basic HTML version of the original green screen; further customization can be carried

Total - 452

out to provide a more modern graphical user interface (GUI). Any such customization is unlikely to
have a significant impact on performance, as the underlying application design will remain unchanged.

The flow of the 3270 Web-bridge-enabled Trader application is illustrated in Figure 20 and described
below. It is essentially the same as the 3270 green screen version of Trader, since the 3270 Web bridge
allows you to Web-enable your 3270 application with little or no modification.

1. The initial transaction is invoked through the 3270 Web bridge from a Web browser using a URL
of the form http://myhost/cics/cwba/dfhwbtta/trad . This invokes the CWS module DFHWBTTA,
which starts the TRAD transaction under a 3270 bridge environment. CICS creates a virtual 3270
terminal called a 3270 bridge facility, and the 3270 transaction then executes under the control of
the Web bridge exit (DFHWBLT), unaware of the fact that the 3270 bridge facility is an emulated
rather than a real 3270 terminal. TRADERPL calls the TRADERBL module in order to read the
customer file. Then TRADERPL outputs the signon map, which is converted to HTML by CICS
using a pre-generated HTML template.

2. The signon HTML page is sent back to CICS, and TRADERPL is invoked. The HTML version of
the company selection display is sent to the Web browser.

3. A company is selected, and TRADERPL returns the main options display.

4. A New Real-Time Quote is selected, and TRADERPL calls TRADERBL, which reads the
company and customer files, and then returns the real time quote display.

5. PF3 is selected to exit back to the main options display, invoking only TRADERPL.

6. Option 2 for Buy Shares is selected, and TRADERPL invoked, which returns the buy shares
display.

7. The number of shares to purchase is selected. TRADERPL calls TRADERBL, which reads the
company file and updates the stock holding in the customer file. TRADERPL then returns the
main options display.

8. A New Real-Time Quote is selected (as in step 4). TRADERPL calls TRADERBL, which reads
the company and customer files. TRADERPL then returns the real time quote display.

9. PF3 is selected to exit back to the main options display.

10. PF12 is selected, and the application terminates by TRADERPL, sending a final SEND TEXT
message to the screen on completion.

As with the 3270 version of Trader, we will define these ten CICS tasks as constituting a single business
transaction.

Figure 20: 3270 Web bridge Trader application flow

4.1.2 Application characteristics influencing performance

In this section we will discuss the factors which impact the performance of applications using the 3270
Web bridge.

Business transaction flow

The flow of the Trader application is identical when Web-enabled through the 3270 Web bridge, to the
flow of Trader as a 3270 green screen application. When using the 3270 Web bridge to Web-enable an
application, there are several management functions that impact the CPU usage of the application.

One of the key differences between Trader as a 3270 application and Trader as a Web-enabled
application is how application state is maintained. In a 3270 environment, state data is naturally
maintained using the CICS terminal. This allows the application to "know" its location within a pseudo-
conversational chain and to store or pass data between different tasks in the pseudo-conversation. In
contrast, the Internet is a stateless environment. Thus there is no permanent connection established
between a Web browser and CICS. There is also no real 3270 device with which to associate session
data, since the transaction is run under the control of a "3270 bridge facility". Instead, the 3270 bridge
uses state tokens in hidden HTML fields to keep data for one user separate from others.

3270 bridge facility management

The 3270 Web bridge is responsible for managing these virtual 3270 devices. It does this using 3270
bridge facilities, which are created at the start of a pseudo-conversation and destroyed at the end. The

3270 bridge facility looks to the underlying application like a true 3270 device, including the ability to
have associated state data, such as the next transaction identifier and a COMMAREA. The 3270 Web
bridge uses the state tokens to associate the correct 3270 bridge facility with the correct user when new
input arrives.

The 3270 Web bridge assumes that the user is beginning a new business transaction if the request does
not carry state tokens from a previous interaction. The 3270 Web bridge regards the end of a pseudo-
conversational chain as the absence of a "next transaction identifier" on the last CICS task. The SIT
keep-time parameter, configured using the WEBDELAY keyword, tells CICS how long to keep a 3270
bridge facility that remains inactive, so that if the user loses connectivity (or interest) before the end of
the pseudo-conversational chain, the 3270 bridge facility is not retained indefinitely.

Impact of pseudo-conversational chain length

The length of a pseudo-conversational chain within an application can affect CPU usage significantly. If
the user is permanently held within the pseudo-conversation, then the state data and 3270 bridge facility
are held continuously. This results in less work for the 3270 bridge garbage collector and shorter
pathlengths within the 3270 bridge facility and state data management routines.

3270 bridge garbage collection

Garbage collection is the CICS management routine which is responsible for purging control blocks
associated with Web state data. For each 3270 bridge facility created, the 3270 bridge maintains Web
state data within CICS storage. As more Web state data is managed by the CPU usage associated with
CWBG, the garbage collection transaction, will also be higher.

CWBG is started periodically. When it runs, it calls the CWS State Manager, which runs through the
chain of Web state blocks destroying unused or timed out blocks, and flagging blocks that haven't been
used for the time-out period to get destroyed on the next cycle. The frequency of garbage collection is
controlled through the WEBDELAY SIT parameter, which is discussed below.

WEBDELAY(time_out,keep_time)

WEBDELAY is a CICS System Initialization Table (SIT) parameter which controls 3270 bridge facility
time-out and application state data keep-time.

l Time_out is the maximum time, in minutes, that a CICS task running under a 3270 bridge facility
is allowed to remain in a terminal wait state before being timed out.

l Keep_time is the amount of time, in minutes, during which application state data is maintained.
Keep-time also controls the frequency of garbage collection.

Setting the WEBDELAY parameters to low values is advisable if the transaction rate is high and the
number of CICS tasks within a business transaction is low. This avoids potential performance
degradation caused by large amounts of 3270 bridge facility and state data being managed. However,
setting WEBDELAY too low may cause bridge facilities and state data to be timed out before a business
transaction has completed. In all our tests with the 3270 Web bridge, we set WEBDELAY to its lowest
setting of (1,1). This gave good results in our environment, and the delay of one minute was greater than
the think time in any of our Web client test scripts. Refer to A.2.2 , "CICS Web support with the 3270
Web bridge" on page 164 , for full details of our test configuration.

Persistent HTTP connections

The use of persistent HTTP connections (often termed KeepAlive), whereby subsequent HTTP sessions
can reuse the underlying TCP/IP socket connection, will aid the performance of CWS applications.
Support for persistent HTTP connections is enabled within CICS by using the SOCKETCLOSE
keyword on the TCPIPSERVICE definition. Support is enabled with the OS/390 Web server using the
directives PersistTimeout and MaxPersistRequest . The time-out period is counted from the receipt of
the last HTTP datastream from each Web browser. Note that the Web browser client must also support
persistent connections, and this includes an HTTP application proxy server if one is used.

We used an HTTP connection time-out of 10 seconds in all our 3270 Web bridge tests; this was greater
than the think time in any of our test scenarios, and so allowed a pseudo-conversational chain to re-use
the same TCP/IP socket connection. However, you should note that enabling persistent connections has
the affect that each Web attach transaction (CWXN) remains long running until the time-out expires or
the Web browser client closes the connection. This will require a higher number of CICS tasks to be
running in your CICS region, and you should balance this against the performance benefits. We tested
the effect of persistent HTTP connections in our Web-aware tests, which are detailed in Chapter 5 ,
"CWS with Web-aware presentation logic" on page 65 .

HTML templates

The placement of HTML templates is controlled through a DOCTEMPLATE CICS resource definition
and has a potential impact on performance. The fastest load times for these HTML templates can be
achieved by storing them as CICS load modules. These modules are managed like other loaded CICS
programs and may be flushed out by program compression when storage is constrained. For more
information on how to store HTML templates as CICS load modules, see the redbook, CICS
Transaction Server for OS/390 Version 1 Release3: Web Support and 3270 Bridge , SG24-5480.

SEND TEXT

The CICS SEND TEXT command is a relatively costly command when executed through the 3270 Web
bridge, as compared to using BMS. The reason for this is that the data stream contained in the SEND
TEXT is translated between 3270 and HTML character-by-character as it is sent to the 3270 bridge
facility. The CPU overhead associated with each SEND TEXT is thus greater than the CPU usage of a
BMS commands. BMS commands are less CPU intensive because they use pre-generated HTML
templates which can be cached in memory as CICS load modules.

4.2 Performance tests using the 3270 Web bridge
In our performance tests we used a simple BMS test application running under the 3270 Web bridge.
This program consisted almost entirely of 3270 presentation logic, and thus was not the same as a real
life application such as Trader, which is likely to spend more time in business logic than presentation
logic. In the following section we present our testing methods and results when using our simple BMS
test application. We then go on to detail a capacity planning methodology, and show you how to use our
results to estimate the CPU usage when Web-enabling a real life application such as Trader.

4.2.1 Test environment

The test environment was equipped with sufficient hardware (processor, memory, DASD, network
bandwidth) to eliminate any constraints. The operating system was OS/390 v2.7 together with CICS

Transaction Server V1.3. Full details of the software levels and parameters in effect during testing are
listed in Appendix A "Test environments" on page 161 . The test system hardware configuration is
illustrated in Figure 21 .

Figure 21: 3270 Web bridge test environment

4.2.2 Test methodology

For the 3270 Web bridge tests in this chapter, Web browsers were simulated using the Compuware
QALoad product. These were run from two nodes of an AIX SP2 connected via Token Ring emulation
over an ATM network to the S/390 processor, as illustrated in Figure 21 on page 57 . The think time was
set to different values and the workload allowed to settle before a five minute measurement interval was
sampled using the OS/390 RMF feature. This process was repeated for different think times to obtain
results for five throughput rates from approximately 15 up to 100 Web requests per second. All the tests
used 128 simulated Web browser clients.

Our 3270 test application was a simple BMS 3270 application. It consisted of a pair of CICS 3270
transactions which sent and received BMS maps in a pseudo-conversational mode. The BMS map
contained some identifying header information and two 50 byte data fields. The program contained
virtually no business logic, and as such, was only designed to test BMS data transmissions.

This workload was run in both a continuous, and a non-continuous, 3270 pseudo-conversation. In the
non-continuous pseudo-conversation there are two CICS tasks in every pseudo-conversation. The first
task sends a BMS map, and then initiates the second task using the RETURN TRANSID command. The
second task receives the BMS map, issues a final SEND TEXT command, and then terminates. Thus,
during this test, there is a continuous cost of creating and destroying 3270 bridge facilities as pseudo-
conversations start and stop.

In the continuous pseudo-conversation, the second task was modified to issue a RETURN TRANSID
command for the first transaction, such that the pseudo-conversational chain never finishes. Since a
3270 bridge facility is created on the first transaction in the pseudo-conversation and not destroyed until
the end of the pseudo-conversation, there were no bridge facilities created/destroyed for the duration of
the measurement, which was taken once the workload had settled.'

All our tests with the 3270 Web bridge used a CWS direct connection; it is also possible to use the CICS

WebServer Plugin in conjunction with the 3270 Web bridge, as described in 1.2.4 , "3270 Web bridge"
on page 12 . If you wish to use the CICS WebServer Plugin, you should refer to Chapter 5 , "CWS with
Web-aware presentation logic" on page 65 , where we give details of our performance measurements
using the WebServer Plugin with Web-aware presentation logic.

4.2.3 Test results

In this section we present a summary of the performance measurements of our simple test BMS
transaction using the 3270 Web bridge to illustrate the important points from the data. All the actual test
data can be found in Appendix B "Performance data" on page 169 . Refer to Table 32 on page 171 and
Table 33 on page 171 .

We did not report transaction response times in our test results, but IBM internal measurements have
shown significant improvements in the 3270 Web bridge response time in CICS TS V1.3 as compared
CICS TS V1.2, due to the restructuring of CWS in CICS TS V1.3.

Figure 22 illustrates the CPU usage for our test of a non-continuous pseudo-conversation. Figure 23
illustrates how the total OS/390 CPU usage varied between the non-continuous pseudo-conversation and
the continuous pseudo-conversation scenarios. In both graphs, the figures plotted are the % usage of a
single R55 CPU with a maximum of 500% available.

Figure 22: 3270 Web bridge, non-continuous pseudo-conversation

Figure 23: 3270 Web bridge, continuous vs. non-continuous pseudo-conversation

Figure 23 illustrates that the CPU usage associated with a 3270 Web-bridge-enabled transaction is
primarily within the CICS address space. The CPU usage associated with TCP/IP becomes a decreasing
portion of the total CPU usage as the throughput increases.

The higher CPU usage of a non-continuous over a continuous conversation can be clearly seen in Figure
23 . Since both workloads sent and received the same amount of data, the higher cost of a non-
continuous pseudo-conversation is attributable to the increased overhead of managing bridge facilities
and state data when using a non-continuous pseudo-conversation.

4.3 Capacity planning for the 3270 Web bridge
In this section we use the results of our previous performance tests to create a capacity planning
methodology for estimating the CPU usage of a Web-enabled CICS application using the 3270 Web
bridge. We then use this methodology to estimate the CPU usage when the Trader application is Web-
enabled using the 3270 Web bridge. We also present the results of a test to confirm this capacity
planning estimate.

4.3.1 Capacity planning methodology

Using our the results of our performance tests for the 3270 Web bridge, we have calculated a general
increase formula for Web-enablement using the 3270 Web bridge. This formula uses the length of the
3270 pseudo-conversational chain as a key factor and provides a different increase, depending on the
length of the pseudo-conversational chain. This formula has been subject to separate validation using
several different 3270 workloads with differing amounts of screen data, and has been found to give good
results. The formula is documented in Figure 24 .

Continuous pseudo-conversation:

 New total CPU ms = Original 3270 total CPU ms + (throughput * 8.54)

Non-continuous pseudo-conversation:

 New total CPU ms = Original 3270 total CPU ms + (throughput * 11.1)

Total CPU = all CPU consumed in OS/390 LPAR in one second

Throughput = CICS tasks per second

Figure 24: 3270 Web bridge general increase formulae

We will use the continuous pseudo-conversation formula for estimating the Trader workload, since
Trader has ten CICS tasks in one business transaction, which is a relatively high number. If you are in

doubt about which formula to use, we would advise using the non-continuous pseudo-conversation, as
this will give more margin for error.

4.3.2 Capacity planning estimate

Applying the general increase formula in Figure 24 on page 61 to Trader, we anticipate the increase
represented in Table 4 for running 10 Trader business transactions per second via the 3270 Web bridge.
The original costs of running the Trader application in a 3270 environment were calculated using the
linear equations in Figure 18 on page 48 .

Table 4: Estimated CPU increase for Trader via 3270 Web bridge

Of this total 1306 ms for running Trader using the 3270 Web bridge, we can estimate how much should
be allocated to the different OS/390 components. We do this by first deducting the known cost of 171
ms for the business logic in TRADERBL, and then using the relative proportions reported for each
component in our test results. We used our results from a non-continuous pseudo-conversation in Table
32 on page 171 . A throughput of 111.8 Web requests/second was chosen, as it is the closest to our
defined rate of 100 CICS tasks per second (or 10 business transactions per second). This calculation is
illustrated in Table 5 .

Table 5: CPU percentage breakdown for Trader via 3270 Web bridge

4.3.3 Confirming our estimate

In order to quantify our capacity planning estimate, we actually measured the CPU usage of the Trader
application Web-enabled using the 3270 Web bridge. We determined from CICS monitoring data that a
single business transaction using persistent HTTP connections consumed, on average, 93 CPU ms
within the CICS address space. This included the cost of the CWBA (alias) and CWBG (garbage
collection) transactions. Our estimation, documented in Table 5 on page 62 , shows a usage of 171+928
= 1099 CPU ms per 10 business transactions that is allocated to CICS, which equates to 101 CPU ms
per individual business transaction. This measured value of 93 CPU ms is 8% less than our estimate of
101 CPU ms. This indicates that our capacity planning methodology gives good results for the 3270
Web bridge.

Old total (CPU
ms)

Throughput
(tasks/sec.)

3270 Web bridge general
increase

New total (CPU
ms)

452 100 8.54 1306

Component Percentage of total per
component

CPU usage for 10 business transactions
component (CPU ms)

CICS
TRADERBL - 171

CICS other 81.8% 928
TCP/IP &

VTAM 15.2% 173

OS/390 other 3% 34
Total - 1306

4.4 Trader performance comparison
Using our capacity planning estimate in Table 5 on page 62 , we have compared the CPU usage of the
Trader application running via the 3270 Web bridge to the original costs of the 3270 version. This is
illustrated in Figure 25 . The figures plotted are CPU ms on an 9672-R55, for running 10 invocations of
the Trader application.

Figure 25: Capacity planning estimates for Trader via 3270 Web bridge

This graph illustrates that when using the 3270 Web bridge, the cost of the business logic portion of the
application remains constant, but the cost of the presentation logic (CICS other) increases
approximately five fold. This is due to the high overhead of emulating and managing the 3270
environment within CICS. This additional CPU usage would mean that on our 9672-R55 processor, the
CICS region CPU usage would theoretically exceed 1000 CPU ms or 100% of one CPU. However, this
is greater than the maximum capacity of a single CICS region. Solutions to this situation are discussed
further in 8.3 , "Using too much CPU" on page 146 .

In summary, the ease of implementation of a 3270 Web bridge solution needs to be balanced against the
relatively high CPU cost of such a solution. Alternative non-3270 based Web-enabling solutions are
discussed next in Chapter 5 , "CWS with Web-aware presentation logic" on page 65 and Chapter 7 ,
"The OS/390 CTG" on page 103 .

Chapter 5: CWS with Web-aware presentation
logic
Overview
In this chapter we summarize how to provide Web access to the business logic of the Trader application,
using CICS Web support (CWS) together with new Web-aware CICS presentation logic. We then
present a set of performance studies of for various laboratory workloads and go on to use these figures to
perform capacity planning for Web-enablement of the Trader application.

5.1 Converting the Trader application

Two programming tasks are required when Web-enabling the Trader application using CWS and Web-
aware presentation logic. This is in contrast to the CWS 3270 Web bridge solution, which requires little
or no programming.

First, we must separate the 3270 presentation logic from business logic in the application. This is easy to
do in the Trader application, because the business logic and presentation logic are isolated in separate
modules, TRADERBL and TRADERPL, respectively. In many legacy CICS applications, this is not the
case, and separating the business and presentation logic may require extensive re-engineering. It is,
however, an essential part of using this and other CICS Web-enabling techniques and offers several
benefits which should become clear throughout this chapter. Figure 26 illustrates this required division
of presentation and business logic.

Figure 26: Separation of business logic and presentation logic

The second programming task is to supply the HTTP Web-aware presentation logic, which will have to
perform two new functions:

l Interpret the browser input and, when we need a business function, convert it to the COMMAREA
format expected by TRADERBL.

l Produce responses in HTML, including converting output returned in the COMMAREA from the
called business logic (TRADERBL).

This Web-aware presentation logic is best implemented in a new HTTP based presentation module, just
as TRADERPL was the 3270 based presentation module for 3270 devices. This module can either be a
specific HTTP presentation logic module, or it can be implemented in the converter routine that the
CWS can invoke. We have chosen the second option and put the new logic into our convertor which is
called TRACERCV. The convertor is invoked by the CWS business logic interface (BLI) and uses a
COMMAREA to pass data to the business functions in TRADERBL.

To create the HTTP based presentation logic for an application such as Trader, there are two
fundamentally different CICS programming techniques:

l The CICS WEB API used together with the DOCUMENT API

l COMMAREA manipulation and the CWS HTML template manager

In releases of CICS TS prior to V1.3, the only choice was to use COMMAREA manipulation and the
CWS HTML template manager to manually build HTML. The new WEB and DOCUMENT APIs
supplied in CICS TS V1.3 greatly ease this task and also overcome the 32 KB limit on the size of HTTP
messages that could previously be passed by means of the CICS COMMAREA.

5.1.1 Basic application structure

In this section we describe how the Trader application was Web-enabled via the facilities of CWS. The
new Web-aware presentation logic was implemented in a converter module called TRADERCV, and the
HTTP data streams manipulated using the CICS WEB and DOCUMENT API. This converter can be
used via a CWS direct connection or the WebServer Plugin.

The flow of CICS tasks in one business transaction is illustrated in Figure 27 and documented below.

1. CWS receives the initial HTTP GET for TRADERPL from the browser, with the converter
program TRADERCV specified in the request. A CWXN Web attach transaction is started and
handles all further HTTP requests for this business transaction, using a persistent HTTP
connection. TRADERCV is invoked, which builds the signon page HTML using the CICS
DOCUMENT and WEB API and sends it back to the browser.

2. The Web browser does an HTTP POST of the signon form. The request is passed to
TRADERCV, which calls TRADERBL passing a COMMAREA as input. TRADERBL verifies
the userid and password, reads the company and customer files and returns the result to
TRADERCV via the COMMAREA. TRADERCV returns the company selection HTML page.

3. The Web browser does a POST of the company selection form. TRADERCV receives this data,
and calls TRADERBL via the COMMAREA. TRADERBL browses the company and customer
files, builds the buy-sell quote page , and returns the quote to the browser.

4. The Web browser does an HTTP POST of the completed buy-sell quote page with the number of
shares to buy. The request is passed to TRADERCV, which calls TRADERBL passing a
COMMAREA. TRADERBL updates the share holdings in the customer file, and calculates the
value of the updated holdings. TRADERCV sends the buy-sell quote page with the value of the
new share holdings.

5. The Web browser does an HTTP POST when the user clicks on the End Trader radio button.
TRADERCV returns the Trader Complete page.

Figure 27: Trader application flow using CWS and Web-aware presentation logic

Comparing these flows to that of the 3270 Trader application described in Chapter 3.1.1 , "Basic
application structure" on page 38 , it is clear that the number of CICS tasks in one business transaction
has been reduced from ten to five. This was enabled by the removal of the dependency on the
hierarchical 3270 menu system, and the implementation of a new presentation layer.

These flows were analyzed using CICS tracing and the data sizes measured. The results are summarized
in Table 6 , and will be used later in our capacity planning calculations.

Table 6: HTTP datastream sizes when using Trader via CWS

5.1.2 Application characteristics influencing performance

There are a number of characteristics of an application that affect its cost in terms of system resources
and hence its performance. For an application using CICS Web support, the following principal factors
can be identified.

Size of datastream

For both incoming and outgoing HTTP datastreams, the CPU cost in CICS, TCP/IP, and VTAM
(eNetwork Communications Server), and the OS/390 Web server, will all increase as the size of the
HTTP message increases. Note that in more recent versions of OS/390 eNetwork Communications
Server, CPU usage for TCP/IP is allocated to both the TCP/IP and VTAM address spaces. The general
principal, as in all communications tuning, should be reduce the amount and frequency of data
transmitted, and to make sure packet sizes match throughout the network.

Outgoing HTTP messages (from CICS) containing HTML may often contain comments put in by well-
meaning HTML application programmers. These are never presented on the browser screen, but
nevertheless are transmitted across the network from the Web server to the Web browser, sometimes
constituting a significant percentage of the data. To reduce outgoing datastream size, datastreams should
be created with the minimum number of HTTP components, usually just the HTTP level, a suitable error
code, a message, a content type, and a content length header.

Inbound datastream size can be significantly affected by different Web browsers, which will send
different amounts of HTTP header data, much of which aren't really essential. There is little you as the
application programmer can do about this, but you should be aware of the fact when testing or analyzing
your applications.

HTTP presentation logic

Within CICS, the Web-aware HTTP presentation logic can either be coded using the WEB API or by
using COMMAREA manipulation and the HTML template manager. Further details on the difference in

Step HTTP method Bytes received Bytes sent
1 GET 261 2007
2 POST 453 1923
3 POST 458 2406
4 POST 449 2406
5 POST 456 1342

CPU usage between these techniques are given in Figure 31 on page 74 . This HTTP presentation logic
can either be implemented within the encode and decode functions of the CWS converter, or a can be
placed in a separate HTTP presentation logic module. In terms of performance, the only significant
difference between these two methods is the number of EXEC CICS LINKS required to call the
presentation logic, the converter design having the most.

Persistent HTTP connections

The usage of persistent HTTP connections from the Web browser to the Web server can give a
significant performance advantage. The support of persistent HTTP connections in CWS has already
been discussed in "Persistent HTTP connections" on page 56 , and the same principles apply to a Web-
aware design as when using the 3270 Web bridge. We analyzed the effect of persistent HTTP
connections in our Web-aware tests, which are detailed in later in this chapter.

State data

A typical CICS business transaction is composed of several short running CICS tasks, this applies
equally to Web based business transactions as it does to a traditional 3270 legacy application. To enable
continued processing of a business transaction, it is usually necessary to store some "state" data within
the CICS region. This state data can be stored within CICS temporary storage queues (TSQs) using the
facilities of the supplied CWS sample state management program (DFH$WBST). Like all CICS TSQs,
this information can be stored within CICS memory or on physical DASD. Obviously, storing large
amounts of state data within CICS memory will impact the storage requirements of your CICS region,
but will also give better performance than data stored on physical DASD. To optimize performance, you
should aim to be conservative both with the amount of state data stored within CICS and the number of
CICS tasks that constitute your Web business transaction.

5.2 Performance tests using the CWS and Web-aware
presentation logic
In the following section we present our testing methods and results for a range of measurements of CPU
usage for HTTP data transfers using simple Web-aware CICS applications.

5.2.1 Test environment

The system parameters in effect during our testing are listed in A.2.3 , "CICS Web support with Web-
aware presentation logic" on page 165 . These parameters are not necessarily recommended for all
environments, but were found to give good results in our circumstances. The hardware environment is
illustrated in Figure 28 , and also documented in A.1 , "Hardware environment" on page 161 .

Figure 28: CWS test environment

We used the same series of HTTP data transfer tests, in two different environments.

l Direct connection from the Web browser to CWS using the CICS Sockets listener.

l Indirect connection from the Web browser to CWS, using the OS/390 Webserver and the CICS
WebServer Plugin.

The only difference between these tests was in the route of the HTTP data stream and the means by
which CICS handles the HTTP datastream, the CICS application and the Web browser workload setup
being identical.

5.2.2 Test methodology

For the CWS tests in this chapter, Web browsers were simulated using the Compuware QALoad
product. These were run from two nodes of an AIX SP2 connected via Token Ring emulation over an
ATM network to the S/390 processor, as illustrated in Figure 28 on page 70 .

A range of five throughputs from approximately 20 to 190 Web requests per second were achieved by
varying the think time of the simulated Web browsers within the QALoad tool. The number of Web
users was set to 200 for the CWS direct connection environment and 70 when using the CICS
WebServer Plugin. The workloads were allowed to settle before a five minute measurement interval was
sampled using OS/390 RMF.

All our tests used a Web-aware CICS application design, where the HTTP manipulation was performed
within the code of the test program. Four slightly different applications were used, two for testing
sending and receiving of data via the CICS WEB and DOCUMENT APIs, and two for sending and
receiving data via COMMAREA manipulation and the HTML template manager. The sending of data
by CICS was tested using HTTP GET requests from the Web browser, and the receiving of data was
tested using HTTP POST requests.

The principal quantifiable cost associated with Web-aware presentation logic in a CICS application will
be the cost of sending and receiving the HTTP datastream. To quantify this cost, we performed a set of

measurements to determine the CPU cost of sending and receiving different size HTTP data from a
CICS Web-aware application. We measured datastream sizes of 100 bytes, 5 KB, 15 KB, 32 KB, 33 KB
and 50 KB. However, the tests using the WebServer Plugin were limited to a maximum of 32 KB, due
to the limiting size of COMMAREAs when using the External CICS Interface (EXCI). All tests were
run with and without persistent HTTP connections to quantify the savings of doing so.

We also ran a set of 5 KB HTTP data transfer tests using an application written with the old
COMMAREA manipulation programming technique; this was done to enable a performance
comparison of the new WEB API technique and the COMMAREA manipulation technique.

5.2.3 Test results

In this section we present a summary of the performance measurements of our tests using CWS with
Web-aware applications to illustrate the important points from the data. The full set of results are
documented in B.3 , "CWS with Web-aware presentation logic" on page 172 .

We have not reported transaction response times in our test results, but IBM internal measurements have
shown significant improvements in the 3270 Web bridge response time in CICS TS V1.3 compared
CICS TS V1.2 due to the internal restructuring of CWS.

In Figure 29 we show the CPU usage for increasing throughputs for a 5 KB send workload, using a
direct connection and the WEB API, with persistent HTTP connections. The figures plotted are the
percentage usage of a single R55 CPU, with a maximum of 500% available. Throughput is defined as
the number of Web requests per second, and measured in CICS Web-aware tasks per second.

Figure 29: CPU usage of 5 KB send using CWS direct connection

In Figure 30 we plot the same results, but using the CICS WebServer Plugin. Note that the CPU usage
for the Web server includes the CPU used by the CICS WebServer Plugin as well as the Web server
itself, since the WebServer Plugin runs within the Web server address space.

Figure 30: CPU usage of 5 KB byte send using CWS WebServer Plugin

From these two graphs, the following generalizations can be made which hold true across all data sizes
and connection techniques:

l The total OS/390 CPU usage is lower when using the CWS direct connection as opposed to the
CICS WebServer Plugin. This is to be expected, given the more complex pathlength involved
when using the WebServer Plugin as compared to a direct connection.

l The CICS CPU usage is lower per call when the WebServer Plugin is used, as opposed to a direct
connection. This is because the WebServer Plugin replaces a considerable proportion of the
function that otherwise occurs in CICS when using a direct connection.

l The CPU usage by eNetwork Communication Server (TCP/IP and VTAM) is a small percentage
of the overall total CPU usage.

An additional set of tests was run using a COMMAREA manipulation style application. The purpose of
this was to assess if there was any significant difference in CPU cost between using the new CICS WEB
API and the old COMMAREA manipulation technique to build the HTTP datastream. The average CPU
ms per Web request over all the throughputs tested are displayed in Figure 31 , and the full set of results
can be found in Table 59 on page 180 and Table 60 on page 180 . The data plotted is the total OS/390
CPU cost and the CICS CPU cost in ms per Web request. Tests were conducted for 5 KB sends and
receives using a CWS direct connection.

Figure 31: CWS HTTP data transfers, COMMAREA vs. WEB API application design

These results show that there are relatively minor differences in CPU utilization between the WEB API
and COMMAREA manipulation application techniques, but do indicate that sends are somewhat
cheaper than receives. The ease of use of the new WEB API provided in CICS TS V1.3 over the old
COMMAREA manipulation technique is likely to the be the overriding factor in deciding which
technique to use for new CICS Web-aware applications.

Next we analyzed the cost for different size data transfers using the WEB API. We averaged the total
OS/390 CPU cost per Web request for the whole range of throughputs measured and then compared
these for each data size, both for sends and receives. The results are illustrated in Figure 32 on page 75
for a direct connection and in Figure 33 on page 76 for the WebServer Plugin. The figures plotted are
the average total OS/390 CPU ms per Web request for the different data sizes. The actual data for the
direct connection measurements can be found in Table 35 on page 174 to Table 60 on page 180 , and the
data for the WebServer Plugin measurements in Table 62 on page 182 to Table 69 on page 184 . Note
that we were unable to measure the CPU usage for receives with a non-persistent HTTP connection
through the CICS WebServer Plugin due to time constraints.

Figure 32: CPU usage for HTTP data transfers using CWS direct connection

The figures for the CWS direction connection and the WebServer Plugin both demonstrate good
scalability for HTTP data transfers. The main observations from these figures are as follows:

l There is significant cost associated with a minimal data transfer (the null cost), and this cost is
likely to be the dominant cost for small data transfers (less than 10 KB).

l The null cost is considerably higher if using non-persistent HTTP connections as compared to
persistent HTTP connections, but the amount of additional CPU consumed per byte is about the
same.

l Sends are significantly cheaper than receives.

l The figures for 50 KB receives showed a slight decrease in cost per byte over the smaller data
sizes.

Figure 33: CPU usage for HTTP data transfers CWS and WebServer Plugin

Using the plotted data we were able to obtain good linear fit equations relating CPU usage per Web
request to data size; these are used later in our capacity planning estimation. It should be noted that these
costs are only the average CPU cost per request. Analysis of the data showed that the cost per Web
request tends to decrease as throughput increases, and this effect was more pronounced when using the
WebServer Plugin.

5.3 Capacity planning for a CWS Web-aware application
In this section we use the results of our previous performance tests to create a capacity planning
methodology for estimating the CPU usage of a Web-enabled CICS application using the CWS with
new Web-aware presentation logic. We then use this methodology to estimate the CPU usage when the
Trader application is Web-enabled using the CWS with new Web-aware presentation logic.

5.3.1 Capacity planning methodology

Our Web-enabled Trader application has five CICS tasks in one business transaction. Three of these
tasks invoke the CICS Trader business logic module TRADERBL. The HTTP presentation logic is
written using the WEB API, and the size of the data streams sent and received are documented in Table
6 on page 68 . We shall assume that persistent HTTP connections are configured. Thus we can calculate
the basic costs of the application based on the original business logic costs plus the HTTP data
transmission costs.

The costs of the business logic in TRADERBL are already documented in Table 2 on page 45 , and we
shall re-use this data, taking into account that only three calls are made to the business logic in our Web-
enabled trader application, as opposed to four when using the original 3270 version. We shall calculate
the HTTP data transmission costs using linear fit equations relating CPU ms per request to size of the
HTTP data stream. These were produced from the graphs in Figure 32 on page 75 and Figure 33 on page
76 . The equations are listed in Figure 34 . The R-square values for the CWS direct connection equations
were all greater than 0.99, and the R-square values for the WebServer Plugin equations were all greater
than 0.98. Note that since the figures for 50 KB receives showed a small decrease in cost per byte over
the smaller data sizes, they were excluded from the linear fits.

When using a CWS direct connection:

send, persistent HTTP connection

Total OS/390 CPU ms per Web request = 4.52 + (0.078 * data KB)

send, non-persistent HTTP connection

Total OS/390 CPU ms per Web request = 6.65 + (0.093 * data KB)

receive, persistent HTTP connection

Total OS/390 CPU ms per Web request = 5.11 + (0.289 * data KB)

receive, non-persistent HTTP connection

Total OS/390 CPU ms per Web request = 7.13 + (0.301 * data KB)

When using CWS and the CICS WebServer Plugin:

send, persistent HTTP connection

Total OS/390 CPU ms per Web request = 11.7 + (0.206 * data KB)

send, non-persistent HTTP connection

Total OS/390 CPU ms per Web request = 13.9 + (0.189 * data KB)

receive, persistent HTTP connection

Total OS/390 CPU ms per Web request = 10.2 + (0.492 * data KB)

Figure 34: Equations for CPU usage per Web request based on HTTP data size

5.3.2 Capacity planning estimate

The costs for one Web-enabled Trader business transaction consists of five separate Web requests or
CICS tasks as shown in Table 7 .

Table 7: Breakdown of costs in CWS Web-enabled Trader

CICS task HTTP method Data received (bytes) Data sent (bytes)
1 GET 261 2007
2 POST 453 1923
3 POST 458 2406
4 POST 449 2406
5 POST 456 1342

5.3.2.1 CWS direction connection estimation

To estimate the CPU usage at each step when using a direct connection, we use the linear equations
given in Figure 34 on page 77 , relating throughput to the size of the HTTP datastream. To this we add
the known cost of the business logic for Trader as given in Table 2 on page 45 .

For the first CICS task in the Trader business transaction, we use the cost for a non-persistent HTTP
connection, since the HTTP connection must first be established. For the next four CICS tasks in the
business transaction, we use the cost for persistent HTTP connections. At each step there is a relatively
small amount of data sent to CICS from the Web browser. We do not factor this into our estimates, as
doing so proved to be of small consequence. Similarly, we do not take into account that in the test
measurements, there is a small amount of data sent for the receive tests, and a small amount of data
received for the send tests. The calculation of the CPU usage at each step is illustrated in Table 8 .

Table 8: CPU usage per Web request with CWS and direct connection

We can now calculate the CPU usage required to run the Web-enabled Trader at a throughput of 10
business transactions per second (or 50 Web requests per second) as follows:

CPU Usage for Trader

Total CPU ms = 38.5 * 10 = 385 CPU ms

Of this total 385 CPU ms, we can calculate how much should be allocated to the different OS/390
components. We do this by first deducting the known cost of 171 ms for the business logic in
TRADERBL, and then calculating the percentage breakdown for the individual components. We do this
by using the relative proportions reported for each component in our 5 KB test measurements with
persistent HTTP connections, as found in Table 36 on page 174 . The throughput of 39.57 transactions
per second was used, as it is the closest to our defined rate of 50 Web requests per second (or 10

Step Linear equation Data sent
(bytes)

CWS (CPU
ms)

TRADERBL (CPU
ms)

Total (CPU
ms)

1 Total CPU ms = 6.65 + (0.093
* data KB)

2007 6.8 0 6.9

2 Total CPU ms = 4.52 + (0.078
* data KB)

1923 4.7 4.1 8.7

3 Total CPU ms = 4.52 + (0.078
* data KB)

2406 4.7 4.1 8.8

4 Total CPU ms = 4.52 + (0.078
* data KB)

2406 4.7 4.8 9.5

5 Total CPU ms = 4.52 + (0.078
* data KB)

1342 4.6 0 4.6

Totals 25.5 13.0 38.5

business transactions per second). This calculation is illustrated in Table 9 .

Table 9: CPU percentage breakdown for CWS direction connection

5.3.2.2 WebServer Plugin estimation

To estimate the CPU consumption at each step when using the CICS WebServer Plugin we will use a
similar methodology to that used previously in 5.3.2.1 , "CWS direction connection estimation" on page
78 , but instead use the appropriate linear equations for the CICS WebServer Plugin from Figure 34 on
page 77 . This calculation is illustrated in Table 10 .

Table 10: CPU usage per Web request with CWS WebServer Plugin

Since each Trader business transaction comprises five Web requests, we can calculate the CPU usage to
run the Web-enabled Trader at a throughput of 10 business transactions per second (or 50 Web requests
per second) as follows:

CPU Usage for Trader

Total CPU ms = 75.8 * 10 = 758CPU ms

Component Percentage of total per
component

CPU usage for 10 business transactions (CPU
ms)

CICS
TRADERBL 130

CICS other 77.3% 197
TCP/IP & VTAM 13.4% 34

OS/390 other 9.3% 24
Total 385

Step Linear equation Data SENT
(bytes)

CWS CPU
ms

TRADERBL CPU
ms

Total

1 Total CPU ms = 13.9 + (0.189 *
data KB)

2007 14.3 0 12.0

2 Total CPU ms = 11.7 + (0.206 *
data KB)

1923 12.1 4.1 13.9

3 Total CPU ms = 11.7 + (0.206 *
data KB)

2406 12.2 4.1 14.0

4 Total CPU ms = 11.7 + (0.206 *
data KB)

2406 12.2 4.8 14.7

5 Total CPU ms = 11.7 + (0.206 *
data KB)

1342 12.0 0 9.7

Total 62.8 13.0 75.8

Of this total 758 CPU ms, we can calculate how much should be allocated to the different OS/390
components. We do this by first deducting the known cost of 171 ms for the business logic in
TRADERBL, and then calculating the percentage breakdown for the individual components. We
calculate the breakdown for the individual components by using the relative proportions reported for
each component in our 5 KB test measurements with persistent HTTP connections, as found in Table 63
on page 182 . The throughput of 56.49 transactions per second was used from these figures, as it is the
closest to our defined rate of 50 Web requests per second (or 10 business transactions per second). This
calculation is illustrated in Table 11 .

Table 11: CPU percentage breakdown for CWS WebServer Plugin

5.3.3 Confirming our estimate

In order to quantify our capacity planning estimate, we measured the CPU usage of the Trader
application using a direct CWS connection with new Web-aware presentation logic, implemented in the
CWS converter.

We determined from CICS monitoring data that one single business transaction using persistent HTTP
connections consumed, on average, 58 CPU ms within the CICS address space. Our estimation
documented in Table 9 on page 80 shows a usage of 130 + 197 = 327 CPU ms per 10 business
transactions that is allocated to CICS, which equates to 33 CPU ms per individual business transaction.
At a higher throughput the actual cost per transaction will decrease, thus reducing this difference. Even
so, our measured value of 59 CPU ms is still 26 CPU ms higher than our estimate of 33 CPU ms.

On investigation, the reason for this difference is thought to be because of the design of the new Web-
aware presentation logic program TRADERCV. TRADERCV does significantly more than simply
replace the BMS RECEIVE MAP and SEND MAP in Trader, with WEB RECEIVE and WEB SEND
calls.

Within TRADERCV there are a number of calls to the CICS-supplied state management program
(DFH$WBST) to keep application state data across related Web browser requests based on a token
passed between the Web browser and CICS. This state management program stores this state data using
the facilities of CICS Temporary Storage Queues (TSQ). The presentation logic in the converter,
TRADERCV, also makes extensive use of the CICS DOCUMENT API to build HTML pages before
they are sent using the WEB API commands. Neither the state management program nor the

Component Percentage of total per
component

CPU usage for 10 business transactions (CPU
ms)

CICS
TRADERBL 130

CICS other 23% 144
TCP/IP & VTAM 6% 38

Web server 64% 402
OS/390 other 7% 44

Total 758

DOCUMENT API are heavy CPU users, but when their cost is added to a simple transaction, it appears
to have a significant effect which is not factored into the results of our simple estimate based on data
transmission costs alone.

5.4 Trader performance comparison
Using our capacity planning estimates for a CWS direct connection in Table 9 on page 80 , and for the
CICS WebServer Plugin in Table 11 on page 81 , we have compared the CPU usage of the Trader
application running as a Web-aware application to the original costs of the 3270 version. This is
illustrated in Figure 35 . The figures plotted are CPU ms on an 9672-R55, for running 10 invocations of
the Trader business transaction.

Note that 10 Trader business transactions equate to 50 Web requests or CICS tasks when using CICS
Web support, and 100 CICS tasks when using the 3270 green screens.

Figure 35: Capacity planning estimates for Trader via CWS

It should be borne in mind when comparing these figures that the costs are based on the average cost of
transferring HTTP data over the range of throughputs measured. This cost will decrease as throughput
increases, thus reducing the overall CPU usage at higher throughputs; this effect appears to be more
pronounced when using the WebServer Plugin than when using a direct connection to CICS Web
support.

The estimate also does not include the costs of any HTTP presentation logic apart from the basic cost of
building and transmitting the HTTP data stream. In our test to verify our estimation (5.3.3 ,
"Confirming our estimate" on page 81), we found that the presentation logic costs in our CICS Web-
aware version of the Trader application were significantly more than our estimated cost based on
transmission of the HTTP data stream.

Chapter 6: SSL with CWS
Overview
In this chapter we summarize how to provide Web access to the business logic of the Trader application,
using CICS Web support (CWS) together with new Web-aware CICS presentation logic. We then

present a set of performance studies for various laboratory workloads, and go on to use these figures to
perform capacity planning for Web-enablement of the Trader application.

In this chapter we first give a brief overview of the Secure Sockets Layer (SSL) protocol and what the
implications are of using it to secure your CICS Web application. We then present laboratory
performance figures for using SSL with CICS Web support (CWS) to access CICS applications, both
via a direct connection and using the CICS WebServer Plugin. We then go on to use these figures to
perform capacity planning for Web-enablement of the Trader application.

Sources of further information on SSL and CICS Web security are:

Chapter 5 ,"TCP/IP Security Overview" of the TCP/IP Tutorial and Technical Overview , GG24-3376
(redbook)

Chapter 6, "CWS Security" of the CICS Transaction Server for OS/390 Version 1 Release 3: Web
Support and 3270 Bridge , SG24-5480 (redbook)

6.1 SSL overview
Since the Internet is so popular and easy to access, it immediately raises security concerns when used as
the infrastructure for any sort of electronic communication. A recent U.K. newspaper article stated the
findings of the Credit Card research group as follows: "Consumers who pay for goods over the Net are
20 times more likely to fraud than if they pay at a till or over the telephone". (Guardian Weekly,
September 16, Volume 161, No. 12)

It is generally wise to consider the Internet as a non-secure network, implying that data sent could be
read by any person, and that the Web site you are accessing is only that which it claims to be if you have
good reason to believe so. The SSL security protocol was designed to address both of these issues.

SSL is a security protocol that was developed by Netscape Communications Corporation, along with
RSA Data Security, Inc. SSL provides an addition to the standard TCP/IP socket API that has security
implemented within it. Hence, in theory, it is possible to run any TCP/IP application in a secure way
without changing the application. In practice, SSL is only widely implemented for HTTP connections as
the HTTPS protocol.

The SSL protocol is composed of two layers, the SSL Handshake Protocol and the SSL Record
Protocol. The SSL Handshake Protocol provides a protocol for initial authentication of the server and
optionally the client, and for the exchange of secret encryption keys to be used by the Record Protocol.
The SSL Record Protocol sits below the TCP/IP sockets protocol and provides a means for transferring
data using a variety of predefined cipher and authentication combinations.

An HTTPS connection is the protocol used for transmitting HTTP datastreams over SSL connections. A
HTTPS connection is initiated by the client Web browser using a special URL that commences https :
instead of http: . This will establish a secure connection between the Web browser and Web server via
SSL. The following chain of events occurs during this process and is illustrated in Figure 36 . Note that
this is a highly simplified version of SSL. In reality, it contains numerous other details that counter
different types of attack.

1. The client sends a connection request with a client hello message, the content of which includes:
¡ SSL version number

¡ A random number

¡ List of cryptographic options supported by the client (cipher suites)

2. The server evaluates the parameters sent by the client hello message and replies with its own
server hello message. This includes the following information:

¡ Server X.509 certificate containing the server's public key

¡ SSL version number

¡ Session ID

¡ Cipher to be used

¡ Optional request for a client certificate

3. The client authenticates the server certificate and returns a message containing a random number
called the pre-master secret key, which is encrypted using the server's public key. If requested, a
client certificate with a certificate verify message is also sent.

4. The server decrypts the clients message containing the pre-master secret key using the server's
private key. The server switches to the cipher specification selected by the client and authenticates
the client certificate if requested. The server replies with a finished message.

5. Both client and server generate a master key using a hashing process involving the pre-master
secret key and random numbers exchanged previously. This is then used to generate secret session
keys for the subsequent secret key data encryption.

Figure 36: SSL handshake process

The SSL protocol combines the benefits of public/private key (asymmetric) cryptography with those of
secret key (symmetric) cryptography. The SSL handshake phase uses public/private key cryptography to
authenticate the server (and optionally the client) and to distribute a shared secret key. This secret key is

then used for the encryption of all subsequent transmitted data, and offers the benefit of being much less
CPU intensive than public/private key cryptography.

The encryption of data will always have a performance impact; however, using SSL on S/390, this can
be minimized in several ways:

l Usage of the S/390 Cryptographic Coprocessor Feature

The Cryptographic Coprocessor Feature can be used to reduce the CPU costs of SSL data
transmission when using the DES or triple DES ciphers, and SSL handshaking when using the
RSA PKCS#1cipher. In order to use this hardware feature, the OS/390 Integrated Cryptographic
Service Facility (ICSF) has to be installed and operational. ICSF provides a cryptographic
application programming interface.

l SSL session ID re-use

An SSL session can be resumed when a client makes a new HTTP connection; this is achieved by
passing a previous session ID to the server for re-use. This is termed "session ID re-use", and the
handshake involved is termed a null handshake, as opposed to the full handshake usually incurred.
The processing costs of a null handshake are considerably less than those of a full handshake,
since the session ID does not have to be re-generated.

l Choice of cipher suites

SSL offers a choice of different ciphers, and these will have different CPU requirements. Also,
most ciphers offer different levels of security by using different length keys. Key length may
affect CPU usage of the cipher.

l The use of persistent HTTP connections

Use of a persistent HTTP connection, whereby a subsequent HTTP connection re-uses a
previously opened persistent TCP/IP socket connection, ensures that after the initial SSL
handshake, no other handshake is performed until the persistent HTTP connection is broken,
which will usually only occur when the HTTP connection is timed out by the server.

The different types of SSL handshakes can be defined as "full", "null", or "none", and will occur when
using HTTP as follows:

1. A full handshake will be performed when the client initially establishes the HTTPS connection,
since there is no session ID in the client hello message. A full handshake will also be performed
when the server decides a submitted session ID is not valid for re-use.

2. A null handshake will be performed when the client establishes an HTTPS connection and
includes a session ID for the session to be resumed, and the server decides it is valid for re-use.

3. No handshake will be performed when a new HTTPS request is received from a Web browser via
a previously established persistent HTTP connection.

A schematic logic diagram of which SSL handshake is used in which set of circumstances is shown in
Figure 37 .

Figure 37: Types of SSL handshakes

For further information on the SSL protocol with examples of SSL handshaking, go to
http://developer.netscape.com/tech/security/index.html . To read about client authentication, go to
http://home.netscape.com/eng/ssl3 .

In OS/390 V2.7 the SSL protocol was made available as an externalized and integral component of the
operating system. CICS TS V1.3 can utilize this support to implement HTTPS connections when
establishing a direct connection from the Web browser to the CICS Sockets listener in CICS Web
support. The CICS Transaction Gateway (CTG) for OS/390, and the WebSphere application server for
OS/390, also utilize OS/390 SSL support. This allows your Web browser clients to communicate
securely over the Internet with your target CICS region using either the CICS Web support, CTG
applets, or CTG servlets.

6.2 Performance tests using SSL with CWS
In this section, we first present measurements for various types of SSL handshakes, and then we present
measurements for encrypted data transmission via CWS SSL support. We investigate the results of using
different strength server keys, and we show the cost of using selected ciphers for data encryption, as
well as the advantages of using the S/390 Cryptographic Coprocessor Feature for SSL handshaking and
SSL data transmission.

6.2.1 Test environment

The test environment was equipped with sufficient hardware (processor, memory, DASD, network
bandwidth) to eliminate any constraints. The operating system was OS/390 V2.7, together with CICS
Transaction Server V1.3, IBM HTTP Server V5.1, and several PTFs relating to SSL support. Full details
of the software levels and parameters in effect during testing are listed in A.2.4 , "CWS with SSL" on
page 166 . The test system hardware configuration was the same as that used in Chapter 5 , "CWS with
Web-aware presentation logic" on page 65 and illustrated in Figure 28 on page 70 . Additionally, the
S/390 Cryptographic Coprocessor Feature was enabled; this consists of dual cryptographic module chips
protected by tamper-detection circuitry and a cryptographic battery unit. These coprocessors were
dedicated to performing encryption operations for SSL.

6.2.2 Test methodology

For the CWS SSL tests in this chapter, Web browsers were simulated using the Compuware QALoad

http://developer.netscape.com/tech/security/index.html
http://home.netscape.com/eng/ssl3

product. These were run from two nodes of an AIX SP2 connected via Token Ring emulation over an
ATM network to the S/390 processor, as illustrated in Figure 28 on page 70 .

A set of tests were run using a CWS direct connection and using the CICS WebServer Plugin. A range
of five throughputs from approximately 15 to 60 Web requests per second were achieved by varying the
think time of the simulated Web browsers within the QALoad tool. The number of Web users was set to
70 in all cases. The workload was allowed to settle before a five minute measurement interval was
sampled using OS/390 RMF.

The test CICS application was a simple Web-aware CICS program, written in assembler. It used the
WEB and DOCUMENT APIs to send a variable number of bytes as specified by the client. All requests
used HTTP GETs to invoke the CICS program.

For the SSL handshake measurements, an HTTP GET request was used to request that the CICS
program just return 1 byte of data. The use of persistent HTTP connections and SSL session IDs was
controlled to test the following SSL handshakes.

l Full handshake using a 1024 bit server key

l Full handshake using a 512 bit server key

l Full handshake using a 1024 bit server key and the S/390 Cryptographic Coprocessor Feature
enabled

l Full handshake with client certificates using a 1024 bit server key

l Full handshake with client certificates using a 1024 bit server key and the S/390 Cryptographic
Coprocessor Feature enabled

l Null handshake using a 1024 bit server key

l Null handshake using a 512 bit server key

The server key length refers to the size of the public/private key pair used by the server. The size of the
server key is specified in the server certificate.

For the SSL data transmission measurements, the same test program was used as in the SSL handshake
tests, except the amount of data returned was modified. All the data transmission measurements utilized
persistent HTTP connections such that no SSL handshaking was performed for the period of
measurement. The CPU usage of workloads transmitting 1 byte, 8 KB and 16 KB were measured using
the following ciphers

l RC4-MD5 (40 bit and 128 bit)

l Triple DES

l Triple DES together with S/390 Cryptographic Coprocessor Feature enabled

All the tests with the S/390 Cryptographic Coprocessor Feature and with SSL client certificates were
only carried out using a CWS direct connection. The OS/390 Web server does support usage of SSL

client certificates and the Cryptographic Coprocessor Feature, but we did not have time available to test
these configurations.

6.2.3 Test results

In this section we present a graphical summary of the SSL performance measurements, in order to
highlight the important points and to provide the necessary information to perform our capacity planning
estimate. A more detailed performance comparison of the different CICS Web technologies can be
found in 8.2 , "Analysis of results" on page 132 .

SSL handshake results

In Figure 38 we show the total OS/390 CPU% usage for our SSL handshake tests, when using the CWS
direct connection. The figures plotted are the percentage usage of a single R55 CPU, with a maximum of
500% available. Unprocessed results for the measurements can be found in Table 76 on page 187
through Table 82 on page 189 , in section B.4.1 , "SSL handshakes with a CWS direction connection"
on page 187 . The figures marked " with crypto " were measured with the Cryptographic Coprocessor
Feature enabled.

Figure 38: SSL handshakes — CWS direct connection

All handshakes utilized HTTP non-persistent connections; the non-SSL handshake is the cost of
establishing a non-persistent HTTP connection without SSL. The null handshake costs were found to be
the same if using a 512 or 1024 bit server key, and similarly, the full handshake costs with the
Cryptographic Coprocessor Feature enabled were found to be the same when using a 512 or a 1024 bit
server key; in both cases, only the results for the 1024 bit server key are plotted.

In Figure 39 we show the total OS/390 CPU% usage for our SSL client certificate tests with a CWS
direct connection. The figures plotted are the percentage usage of a single R55 CPU, with a maximum of
500% available. All the tests with client certificates used a 1024 bit server certificate. Unprocessed
measurements can be found in Table 83 on page 189 and Table 84 on page 189 , in section B.4.2 , "SSL
data transmission with a CWS direction connection" on page 190 .

Figure 39: SSL handshakes, client certificates

Figure 39 illustrates the high CPU cost of client authentication, but also shows how the Cryptographic
Coprocessor Feature greatly reduces this cost. Usage of the Cryptographic Coprocessor Feature reduced
the CPU cost for client authentication to about the same cost as a full handshake with a 1024 bit key
using the S/390 Cryptographic Coprocessor Feature, as shown in Figure 38 on page 92 .

We did not measure SSL client certificates or usage of the Cryptographic Coprocessor Feature with the
OS/390 Web server and the CICS WebServer Plugin. These features are supported in this configuration,
but we did not have the time available to test them.

In Figure 40 we show the total OS/390 CPU% usage for our SSL handshake workloads, using CWS
with the CICS WebServer Plugin. The figures plotted are the percentage usage of a single R55 CPU,
with a maximum of 500% available. Unprocessed measurements can be found in Table 100 on page 195
through Table 103 on page 196 , in section B.4.3 , "SSL handshakes with the CICS WebServer Plugin"
on page 195 . Note that the Cryptographic Coprocessor Feature was not enabled in these measurements.

Figure 40: SSL handshakes — WebServer Plugin

Figure 40 shows the same pattern as observed in our previous tests, that using the CICS WebServer
Plugin uses somewhat more CPU than using a direct connection to CWS. This difference in CPU usage
when using the CICS WebServer Plugin is discussed in 5.2.3 , "Test results" on page 72.

The results for our SSL handshake tests illustrate several important points:

l The Cryptographic Coprocessor Feature reduces the CPU cost of the full handshakes with 1024
and 512 bit keys to the same level, which is around 210% of the cost of establishing a non-SSL
connection.

l The Cryptographic Coprocessor Feature also reduces the CPU cost of the 1024 bit full handshake
with client certificates to the same level as without client authentication.

l When the Cryptographic Coprocessor Feature is not used, the smaller 512 bit server key reduces
the CPU cost of the full handshake by about three fold.

l The null form of the handshake reduces the CPU cost of the SSL handshake to around 140% of
the cost of establishing a non-SSL connection.

SSL data transmission results

In Figure 41 we show the total OS/390 CPU% usage for the different SSL data transmission ciphers at a
range of throughputs for both the CWS direct connection and the CICS WebServer Plugin. 8 KB of data
were sent from a Web-aware program using the WEB API. The actual data for these measurements can
be found in Table 88 on page 191 through Table 99 on page 194, and Table 104 on page 197 through
Table 106 on page 197, in section B.4 , "CWS with SSL" on page 186. The figures marked triple DES +
crypto used the Cryptographic Coprocessor Feature; this can be used with either a CWS direct
connection or the CICS WebServer Plugin.

The illustrated test results for the RC4-MD5 cipher are simplified because the results were found to be
the same if using a 40 bit (international) or a 128 bit (US domestic) key. This is because they both pass a
16 byte key length into the encryption algorithm. The difference is that 40 bit encryption uses
"salted" (unencrypted random data) as part the of key-block used to generate the 16 byte key. This
reduces the strength of the encryption, not the path length.

Figure 41: CPU usage for 8 KB SSL data transmissions

The graph highlights the following points:

l The Cryptographic Coprocessor Feature provides a reduction of CPU usage for SSL data
transmission of about 50% when using the triple DES cipher.

l The RC4-MD5 cipher (40 or 128 bit) uses less CPU for data transmission than the triple DES
cipher.

l The CPU cost of SSL data transmission is significantly less expensive than the cost of SSL
handshaking, as reported in our "SSL handshake results" on page 92.

6.3 Capacity planning for SSL with CWS
In this section we will now perform an estimation of the OS/390 CPU usage for the Trader application
when Web-enabled via the CWS, using a CWS direct connection and Web-aware presentation logic
secured with the CWS SSL support.

SSL CPU estimation

The data in this chapter should only be used in conjunction with CICS Web support and CICS TS V1.3;
it should not be used to estimate CPU usage for any other IBM products which may use different
implementations of SSL.

6.3.1 Capacity planning methodology

We have already estimated the CPU costs for Web-enabling the Trader application using CWS and a
direct connection to a Web-aware program; this can be found in section 5.3.2.1 , "CWS direction
connection estimation" on page 78 . To estimate the CPU usage of the same scenario but with SSL, we
need to calculate the delta cost for the SSL handshakes and the delta for SSL data encryption.

We will assume that persistent HTTP connections are being used in our application. Thus each Trader
business transaction will incur one full SSL handshake on the first HTTP request in the business
transaction, and the subsequent encryption cost of data sent from CICS to the Web browser.

Note that this is a simplistic model, and it is possible that an application such as Trader could incur
greater or indeed lesser costs. The circumstances where CPU costs could be less are as follows:

l The persistent HTTP connection does not expire across the lifetime of several business
transactions.

If the persistent HTTP connection time-out value does not expire (defined in the SOCKETCLOSE
parameter of the CICS TCPIPSERVICE definition), then a subsequent HTTPS request from a
previously attached Web browser will not incur any SSL handshake costs).

l The persistent HTTP connection is broken, but the SSL session ID time-out value has not expired.

If the SSL time-out value (specified in the CICS SIT as SSLDELAY) has not expired when a
request for a subsequent HTTPS connection from a previously attached Web browser is received,
then a null handshake will be performed, as opposed to a full handshake.

The circumstances where CPU costs could be greater are as follows:

l More Web browser clients are connected to one CICS region than can be supported by the number

of CICS SSL TCBs.

Once the number of attached SSL clients exceeds the number of defined SSL TCBs in one CICS
region, then subsequent HTTP requests will "steal" the least previously used SSL TCB. Since
there is a one-to-one affinity between an HTTPS session and an individual SSL S8 TCB, then
TCB stealing will cause Web browsers that send a subsequent HTTPS request to CICS to incur
the additional cost of an SSL null handshake and the creation of a new HTTP connection. It is
possible to spread larger numbers of Web browsers across multiple CICS "Web Owning" regions
by using TCP/IP port sharing or TCP/IP dynamic DNS to workload-balance HTTP or HTTPS
requests across multiple CICS regions. When using CWS and the WebServer Plugin, the "TCB
stealing" situation does not occur, due to the different internal design of the OS/390 Web server
SSL support.

l Client certificates are used.

If SSL client certificates are used, then further CPU costs may be incurred, both within the SSL
routines in the server (CICS) and on the Web client. As shown in our tests, the costs of SSL
handshaking can be minimized using the S/390 Cryptographic Coprocessor Feature.

l A large amount of data is received as well as sent.

Trader receives only a very small amount of data, and the encryption cost of the HTTP headers is
already included in our SSL data encryption measurements. However, for applications that receive
large amounts of data, this cost should be factored into the capacity planning estimate.

However, we will assume none of these conditions apply to Trader, and that there are sufficient CICS
SSL TCBs to support persistent HTTP connections from all attached Web browsers.

SSL handshake delta

To calculate the CPU delta of the SSL full handshake with a 1024 bit server key using hardware
cryptography, we shall calculate the average CPU cost per request for this handshake and subtract this
from the average CPU cost for establishing a non-SSL, non-persistent HTTP connection. This
calculation is illustrated in Table 12 . The averages were calculated from the CPU ms/request figures in
Table 76 on page 187 and Table 79 on page 188 .

Table 12: SSL handshake delta

SSL data transmission delta

Similarly we can calculate the delta SSL cost for the data transmission. We shall calculate the average
CPU cost per request for the 8 KB data transmission and subtract from this the average CPU cost per
request for a non-SSL data transmission. This calculation is illustrated in Table 13 . The averages were
calculated from the data in Table 86 on page 190 and Table 89 on page 191 .

Non-SSL (CPU

ms)
SSL full handshake

(CPU ms)
Delta per SSL full handshake

(CPU ms)
Average CPU ms per

request
9.7 22.4 12.7

Table 13: SSL data transmission delta

6.3.2 Capacity planning estimate

In this section we will now perform an estimation of the total OS/390 CPU usage for the Trader
application when Web-enabled via CWS, and a direct connection using CICS SSL support. See Table
14 . We will assume minimal SSL costs are incurred as follows:

l CWS direct connection.

l SSL handshake: 1024-bit server key utilizing the OS/390 Cryptographic Coprocessor.

l SSL data transmission: RC4-MD5 cipher with a 40 or 128 bit key.

l No TCB stealing occurs within the CICS region.

l A persistent HTTP connection is used for the duration of the business transaction.

The data sizes used in the trader application are already documented in Chapter 6 , "SSL with CWS" on
page 85 , along with the estimated CPU Usage for Trader at a throughput of 10 business transactions per
second. We will re-use this data and add to it the cost of a full SSL handshake on the first request as
given in Table 12 , and the subsequent SSL encryption costs from Table 13 .

Table 14: CPU usage per Web request with SSL and a CWS direct connection

Since each Trader business transaction comprises five Web requests, we can use this figure of 54 CPU
ms to calculate the CPU cost of running the Web-enabled trader application at a throughput of 10
business transactions per second (or 50 Web requests per second) as follows:

Non-SSL data
transmission (CPU

ms)

RC4-MD5 data
transmission (CPU

ms)

Delta for RC4-MD5 8 KB
data transmission (CPU

ms)

Delta per
KB (CPU

ms)
Average CPU

ms per
request

8.5 10.6 2.1 0.3

Step Data SENT
(bytes)

CWS
(CPU ms)

Handshake
(CPU ms)

Data transmission
(CPU ms)

TRADERBL
(CPU ms)

Total
(CPU ms)

1 2007 6.9 12.7 0.6 0 20.2
2 1923 4.6 0 0.6 4.1 9.3
3 2406 4.7 0 0.6 4.1 9.4
4 2406 4.7 0 0.6 4.8 10.1
5 1342 4.6 0 0.4 0 5.0

Total 25.5 12.7 2.8 13.0 54.0

CPU cost of Trader with SSL

 Total CPU ms = 54 * 10 = 540 CPU ms

Looking at the SSL cost for the same 10 business transactions, we can now calculate:

CPU cost of SSL for Trader

 SSL CPU ms = (12.7 ms + 2.8 ms) * 10 = 155 ms

of this 155 ms

 SSL handshake% = 127/155 = 82%
 SSL data transmission%= 28/155 = 18%

If we now deduct the known cost of 130 CPU ms for the CICS business logic in TRADERBL from this
540 CPU ms to give 410 CPU ms, we can estimate how much should be allocated to the different
OS/390 components. We do this by using the relative proportions reported for each component in our
CWS 8 KB SSL data transmission figures given in Table 89 on page 191 , using the throughput of
60.57, which is the closest to our defined rate of 50 Web requests per second. This calculation is
illustrated below in Table 15 .

Table 15: CPU percentage breakdown for CWS direct connection with SSL

6.4 Trader performance comparison
Using the figures in Table 15 , we have compared the cost of the CWS Web-enabled Trader application
with the cost of the SSL version; this is illustrated in Figure 42 . We assume the use of a 1024-bit server
key utilizing the OS/390 Cryptographic Coprocessor, the RC4-MD5 cipher. The figures plotted are the
total CPU ms used on an 9672-R55, for running 10 Trader business transactions (which equates to 50
Web requests or CICS tasks).

Component Percentage of total per
component

CPU usage for 10 business transactions (CPU
ms)

CICS
TRADERBL

 130 ms

CICS other 74% 303 ms
TCP/IP & VTAM 10% 41 ms

OS/390 other 16% 66 ms
Total 540 ms

Figure 42: Capacity planning estimates for Trader via CWS with SSL

The graph illustrates the cost of enabling SSL security with CWS using a direct connection. The largest
proportion of this cost is incurred in the CICS address space; thus there is a resulting increase in the
"CICS other" CPU usage. Note that the SSL costs represented are minimal SSL costs, and you should
refer to 6.3.1 , "Capacity planning methodology" on page 96 for further information on how the SSL
costs could be different for your particular environment. It would also be possible to use SSL security if
using the CICS WebServer Plugin. We do not present data for this configuration, but in this case, the
additional CPU cost would be incurred in the Web server address space.

Chapter 7: The OS/390 CTG
Overview
In this chapter we first discuss how to Web-enable the Trader application using the OS/390 CICS
Transaction Gateway (CTG). We then present the results of our performance studies of CTG applets and
servlets using simple test applications. We use the results of these performance tests to build a capacity
planning methodology for estimating the CPU usage when using the OS/390 CTG. Lastly we calculate
the CPU usage of the Trader application if it were to be Web-enabled using the OS/390 CTG.

CTG V3.1

Version 3.1 of the CTG has implemented significant performance enhancements over version 3.03 of the
CTG and its predecessor the CICS Java Gateway v2. However, because of this, if the OS/390 CTG V3.1
is used with CICS Transaction Server V1.2, it requires the fix for APAR PQ31270 to be applied to
CICS. This does not apply if using CICS Transaction Server V1.3

7.1 Converting the Trader application
In this section we discuss the Trader application and how to convert it from a legacy 3270 application to
a modern Java-based application using the CTG. Refer to Chapter 3 , "The 3270 green screen Trader

application" on page 37 for more details on the Trader application. This task is eased because the
original Trader application has separate business and presentation logic. The CICS business logic in the
program TRADERBL can be invoked directly using the CTG External Call Interface (ECI) Java
methods.

The CTG provides the ability for Java client programs to access CICS in three different architectures;
applets, servlets, or stand-alone Java applications. We will discuss the applet and the servlet options, as
there is no specific architecture for Java applications. Refer to 1.3 , "CICS Transaction Gateway" on
page 14 for a description of the applet architecture and the servlet architecture.

7.1.1 Basic application structure

We now give a brief overview of how the application structure would look if the Trader application was
Web-enabled, using Java applets and Java servlets.

Using the applet architecture

If a Java applet architecture was used to Web-enable the Trader application, the presentation logic would
be implemented within the Java applet, from which ECI calls would be made to the business logic
within CICS. The flow of requests in one Trader business transaction is illustrated in Figure 43 and
explained below.

1. An HTTP request is sent from the Web browser to the Web server for an HTML page containing a
tag for the CTG Java applet.

2. The Web server returns the HTML page with the embedded applet tag.

3. The browser requests download of the specified applet.

The applet is invoked within the JVM of the Web browser and now runs the rest of the application; this
would be as follows:

4. The applet opens a network connection to the CTG Java gateway application on OS/390 using the
JavaGateway.open() method.

5. The applet builds an HTML page, and the user enters his userid and password into the presented
display. The applet constructs an ECI request with a COMMAREA of 372 bytes containing the
userid and the password. Then the applet, using the JavaGateway.flow() method, calls the
TRADERBL program in CICS passing the COMMAREA. The ECI request is flowed to the CTG
Java gateway application, which passes it on to CICS using the External CICS Interface (EXCI)
protocol. The CICS business logic program TRADERBL returns the company list in the
COMMAREA, which is passed back to the applet by the CTG.

6. The applet constructs an ECI request with a COMMAREA of 372 bytes containing the company
selection. Then the applet, using the JavaGateway.flow() method, calls the TRADERBL program
in CICS passing the COMMAREA. TRADERBL returns the quote in the COMMAREA.

7. The applet constructs an ECI request with a COMMAREA of 372 bytes containing the number of
shares to buy. Then the applet, using the JavaGateway.flow() method, calls TRADERBL passing
this COMMAREA. TRADERBL returns the number of shares bought in the COMMAREA. The

applet then updates the quote and displays it.

8. The applet closes the connection to the CTG Java gateway application using the
JavaGateway.close() method.

Figure 43: Trader application flow using the CTG applet architecture

It is important to note that the number of calls to the CICS business logic per Trader business transaction
is now three, and thus the number of CICS tasks per business transaction is also three.

Using the servlet architecture

If a Java servlet architecture was used to Web-enable the Trader application, the presentation logic
would be part of the servlet or a Java Server Page (JSP), while the business logic remains unchanged
inside the CICS application. A servlet is controlled by and runs within the JVM of the servlet engine
such as WebSphere Application Server.

The basic structure of the Trader application Web-enabled using a servlet architecture is illustrated in
Figure 44 , and the flows would then be as follows:

1. An HTTP request is sent from the Web browser to the Web server for the relevant servlet.

2. The Web server invokes the servlet.

The servlet is now in control and runs the rest of the application. We assume the servlet was loaded at

the start-up of the Web server, and also that the local connection to the CTG was established at that
time. Further processing in case of the Trader application would be as follows:

3. The servlet builds an HTML page for the signon display and sends this to the Web browser.

4. A userid and password is entered on the HTML page and the Web browser sends this to the
servlet. The servlet uses the CTG ECI methods to build an ECI request. Then the servlet, using the
JavaGateway.flow() method, calls the CICS program TRADERBL, passing a COMMAREA.
TRADERBL returns the company list in the COMMAREA, and the servlet formats the company
list display and sends the HTML to the Web browser.

5. A company is selected. The servlet reads the company selection, and uses the CTG Java methods
to build an ECI request with a COMMAREA containing the company selection. Then the servlet,
using the JavaGateway.flow() method, calls TRADERBL, passing this COMMAREA.
TRADERBL returns the quote in the COMMAREA, and the servlet formats the quote display and
sends the HTML to the Web browser.

6. The option for buy shares is entered. The servlet reads the buy share option, and builds a
COMMAREA containing the number of shares to buy. Then using the JavaGateway.flow()
method, the servlet calls TRADERBL, passing the COMMAREA. TRADERBL returns the
number of shares bought in the COMMAREA to the servlet; the servlet then builds an HTML
page and sends this to the Web browser.

Figure 44: Trader application flow using the servlet architecture

It is important to note that the number of calls per business transaction to the CICS business logic is now

only three, and that the number of Web requests per business transaction is now four.

7.1.2 Performance considerations

We will now describe the major issues which are likely to affect the performance of CTG applet and
servlet designs.

7.1.2.1 Using the applet architecture

When using the applet architecture, all the new Java presentation logic will be executed in the Web
browser. The following characteristics should be considered:

Client CPU usage

The performance of the Java Virtual Machine (JVM) on the Web browser will affect the performance of
the applet solution, since the new presentation logic is implemented within the JVM on the client
machine's Web browser. This will not impact the server CPU usage and will not be considered in our
studies.

CTG thread usage

The CTG Java gateway application, which is used for the applet architecture, is itself a sophisticated
multi-threaded Java application. It can handle multiple requests simultaneously and has a set of
properties (configured in the CTG.INI file), to allow requests to be queued and timed-out if necessary.
Within this file two pools of threads are can be configured, the ConnectionManager threads and the
worker threads. For each connected applet client, one ConnectionManager thread is used in the Java
gateway application, and is held until the client issues a disconnect using the JavaGateway.close()
method. In order for an ECI call to be performed via an allocated ConnectionManager thread, a thread
must be allocated from the worker thread pool for the duration of the ECI request. This relationship is
summarized in Figure 45 .

Thus the ConnectionManager threads limit the maximum number of connected Java applets, while the
worker threads limit the number of concurrent ECI calls that can be issued by these attached clients. The
initial and maximum numbers of these ConnectionManager and worker threads are set in the CTG.INI
file. Requests can be timed out if a ConnectionManager or worker thread does not become available
within a specified time, or if the gateway detects that a client is idle or is not responding. Further details
are given within comments in the CTG.INI file.

Figure 45: CTG threading model

Network I/O

The bandwidth of the network is of primary importance, and the network protocol used to connect from
the Web browser to the CTG can also be an important factor influencing overall performance and
scalability of the solution. If this network runs over a public network such as the Internet, then you may
not be able to control the bandwidth or availability of this network. The performance of the network will
be affected by:

l The size of the applet downloaded from the Web server

l The size of the data passed in an applet ECI COMMAREA

l The number of ECI requests made per business transaction

The CICS COMMAREA is passed across the network from the applet via the CTG Java gateway
application to the CICS server and back. You should always try to design your application so it has the
minimum number of data flows from the Web client through to the CICS server. It is also possible both
to truncate or compress the data flowed through the network from the applet to the CTG Java gateway
application; further details are discussed in 8.2.5 , "CICS Transaction Gateway" on page 140 .

7.1.2.2 Using the servlet architecture

When using the servlet architecture, the new Java presentation logic will be executed in the OS/390 Web
server address space. The following characteristics should be considered.

Server processing

The servlet architecture places more workload on the S/390 running the Web server as compared to the
applet architecture, because the presentation logic runs within the servlet. Thus the performance of the
OS/390 JVM and the OS/390 Web server are key ingredients in the performance of the servlet
architecture. For hints and tips in this context, refer to the IBM WebSphere Troubleshooter for OS/390 ,
which you can find at: http://www.s390.ibm.com/nc/wsphere.html

http://www.s390.ibm.com/nc/wsphere.html

Java design

The design of the Java logic in your servlet will be a key factor in the overall performance of a servlet
solution, since the presentation logic is implemented within the servlet. One of the key factors in the
performance of your Java presentation logic is likely to be the cost of manipulating datastreams. Thus in
your Java logic you should reduce the amount of parsing of the CICS COMMAREA. Also, all our
performance used the basic Java classes provided by the CTG. If you decide to use the Common
Connector Framework (CCF) CICS classes as provided by Visual Age for Java, you should quantify any
additional costs involved since the CCF classes use a higher level of abstraction than the CTG basic Java
classes.

CTG connection re-use

The connection from the servlet to the CTG is created by using the open() method of the JavaGateway
constructor. When designing a servlet this should usually be a "local" connection to give the best
performance. The CTG local protocol signifies that the CTG will use the Java Native Interface(JNI) to
invoke procedures in the local EXCI shared library provided by CICS.

Since servlets run within multiple threads of the servlet JVM engine, a servlet design is multi-threaded.
These multiple threads can re-use the CTG connection created by the open() method of the JavaGateway
constructor. For best performance you should ensure that this connection is initialized just once in the
servlets init() method, and then re-used during the life of the servlet. A good example of how to
implement a multi-threaded servlet with the CICS Transaction Gateway is described in the CICS
Support Pack CA89 at http://www.software.ibm.com/ts/cics/txppacs , and further details are given in the
redbook Revealed! Architecting Web Access to CICS , SG24-5466.

GUI design

If you want to build a complex HTML GUI for your Web users, then you should consider that, in this
case, the servlet architecture may cause a large increase in network traffic. This is because every HTML
page is built by the servlet and has to be sent from the Web server to the Web browser in every
interaction.

Network I/O

When using the servlet architecture there are two different network transmissions: one between the Web
browser and the servlet, and the other between the Web server and CICS. The flow from the Web
browser to the servlet is across a network and should be reduced as much as possible. The flow from the
servlet to CICS will be cross memory or cross coupling facility, and so is of less concern.

However, you can use this design to your advantage by implementing some new business logic in the
servlet which can make multiple calls to CICS before building the HTML presentation output. This
would enable you to reduce the flows from the Web browser to the Web server, and may make the
servlet architecture attractive as an Internet solution. Note that the CTG setCommareaOutboundLength()
method is not designed for servlet usage, since this only affects the data stream from the Java application
to the CTG.

7.2 Performance tests using CTG Java applets
In the following section we show the results of our performance tests of Java applets and the OS/390

http://www.software.ibm.com/ts/cics/txppacs

CTG. You should be aware that the test scenarios and applications used were simplified in order to
quantify the configuration under analysis; the application tested was not a real life application such as
Trader.

7.2.1 Test environment

The test environment was equipped with sufficient hardware (processor, memory, DASD, network
bandwidth) to eliminate any constraints. The operating system was OS/390 V2.7. We used the CICS
Transaction Gateway for OS/390 V3.1, together with CICS TS V1.3, JDK V1.1.8, WebSphere
Application Server V1.1, and the OS/390 IBM HTTP Server V5.1. The test environment is illustrated
Figure 46 and full details of the software levels and parameters in effect are listed in A.2.5 , "CICS
Transaction Gateway" on page 168 .

Figure 46: CTG applet test environment

7.2.2 Test methodology

The applet workloads were emulated using TPNS; this was achieved by capturing the network flows of a
sample CTG Java applet and then replaying them at different throughputs. The TPNS driver was
running on a separate 9672-R55 processor within the sysplex so as not to interfere with the test OS/390
image.

The think time was set to different values, and the workload allowed to settle before a five minute
measurement interval was sampled using the OS/390 RMF feature. This process was repeated for
different think times to obtain figures for five throughput rates from approximately 30 up to 100 Web
requests per second. All our applet tests used 500 simulated Web browser clients.

Our applet tests used a simple CICS COMMAREA based application. This application was a minimal
application that merely modified and returned the COMMAREA sent by the client. Note that the
complete COMMAREA was transmitted from the applets, through the CTG Java gateway application,
into CICS, and back again. You may be able to significantly reduce network I/O by using methods to
truncate the COMMAREA, refer to "Applet data transmission" on page 140 for further details.

The CTG supports four network protocols for connectivity from an applet to the CTG Java gateway
application, TCP/IP sockets, HTTP, and secure versions of these, namely SSL and HTTPS. We used

only the TCP/IP and HTTP protocols in our tests, and you should quantify the additional costs of using
SSL or HTTPS if you have a need to use these. Note that our tests with SSL in Chapter 6 , "SSL with
CWS" on page 85 only apply to CICS Web support.

We ran a wider range of tests using the TCP/IP protocol and analyzed the effect of the following
variables:

l The cost of opening the network connection from the applet to the CTG Java gateway application

l Re-using the connection from the applet to the CTG across multiple ECI calls

l Increasing the COMMAREA size in ECI requests from 100 bytes to 16KB

l Workload balancing using multiple CTG Java gateway applications

Note that our applet measurements do not include any CPU usage when downloading the applet from
the Web server to the Web browser.

7.2.3 Test results

In this section we present a graphical summary of the performance measurements, in order to highlight
the important points and to provide the necessary information to perform a capacity planning estimate of
an application such as Trader. Comparison of the results of the different Web technologies can be found
in 8.2 , "Analysis of results" on page 132 .

First of all, we analyzed the cost of ECI calls using different network protocols from the applet to the
CTG Java gateway application.

Using the CTG HTTP protocol

For this situation, we measured the CPU cost of sending data using the HTTP protocol. The results are
shown in Figure 47 . The figures plotted are the percentage usage of a single R55 CPU, with a maximum
of 500% available. The size of the COMMAREA for these measurements was 100 bytes and the
connection from the applet to the CTG Java gateway application was not re-used, that is, the cost of each
ECI call includes the cost of opening and closing the HTTP connection from the applet to the CTG Java
gateway application. Refer to Table 115 on page 202 for the detailed set of measurement data.

Figure 47: CPU usage of CTG applets, with an HTTP connection

These figures show that the majority of the CPU cost is incurred in the CTG address space, and that the
cost within CICS is and TCP/IP is minimal.

Using the CTG TCP/IP protocol

In Figure 48 we show a set of measurements illustrating the CPU% usage on an R55 for an ECI
workload, when using the TCP/IP protocol from the applet to the CTG Java gateway application. The
figures plotted are the percentage usage of a single R55 CPU, with a maximum of 500% available. The
size of the COMMAREA for these measurements was 100 bytes, and the connection from the applet to
the CTG Java gateway application was not re-used. Refer to Table 107 on page 198 for the detailed
measurement data.

Figure 48: CPU usage of CTG applets, with a TCP/Ip connection

Comparing these measurements with the TCP/IP protocol to those with the CTG HTTP protocol in
Figure 47 on page 114 , it is can be seen that when using the TCP/IP protocol, approximately 2.8 times
less CPU per call is used, and that this reduction is found principally in the CTG address space.

Cost of making the applet TCP/IP connection

A set of measurements was conducted to understand the CPU usage when opening and closing the
TCP/IP connection from the client applet to the CTG Java gateway application. This event is triggered
in the CTG applet code using the JavaGateway.open() and JavaGateway.close() methods. Measurements
were compared for ECI requests that did and did not re-use the TCP/IP connection from the applet to the
CTG Java gateway application. The total OS/390 CPU% usage for these measurements is illustrated in
Figure 49 . The figures plotted are the percentage usage of a single R55 CPU, with a maximum of 500%
available. Refer to Table 108 on page 199 , Table 107 on page 198 and Table 115 on page 202 for the
detailed measurement data.

Figure 49: CPU usage of CTG applets making TCP/IP connection

This graph shows the efficiency of re-using the CTG applet connection when making multiple ECI calls
from the applet to CICS. Using these figures we are able to calculate the CPU cost of opening and
closing a CTG applet TCP/IP connection. To do this we calculated the average CPU cost per ECI
request for the workload that re-used the connection, and subtracted this from the average CPU cost per
ECI request for the workload that did not re-use the connection. This gave us a figure of 10 CPU ms to
open and close a CTG applet TCP/IP connection, which we will use later in our capacity planning
methodology.

Increasing COMMAREA size, and the TCP/IP protocol

The principal quantifiable factor affecting CPU usage after having made the connection from the applet
to the CTG Java gateway application will be the amount of data transmitted in the COMMAREA when
making an ECI call. We measured CPU costs for COMMAREA sizes varying from 100 bytes to 16KB
bytes in our tests. In Table 16 we have calculated the average cost over our different throughputs for
each ECI COMMAREA size; this data is plotted in Figure 50 . The actual measurements for these
results can be found in Table 108 on page 199 through Table 113 on page 200 . All these measurements
were conducted with one CTG Java gateway application and 500 clients, and re-used the CTG TCP/IP
connection.

Table 16: CPU cost per ECI call with increasing COMMAREA sizes
ECI COMMAREA (bytes) Average total CPU per ECI call

100 12.4 ms
1,000 14.3 ms
2,000 18.0 ms
4,000 19.6ms
8,000 21.8 ms
16,000 27.4 ms

Figure 50: CPU cost of varying CTG applet ECI COMMAREAs

Multiple CTG address spaces and the TCP/IP protocol

In Figure 51 we show a set of measurements conducted using multiple CTG Java gateway application
address spaces. Refer to Table 114 on page 201 for the detailed measurement data. In this scenario we
spread the workload across four CTG address spaces using the OS/390 eNetwork Communications
Server TCP/IP port sharing feature. This allows multiple address spaces to listen on the same port
number, thus providing for inbound IP requests to be workload balanced across these address spaces.
This has the affect on the CTG of reducing the number of threads used per address space. The figures
plotted are the percentage usage by all four CTG address spaces of a single R55 CPU, with a maximum
of 500% available. The COMMAREA size used was again 100 bytes, and the TCP/IP connection was
re-used.

Figure 51: CPU usage of CTG applets using multiple CTG address spaces

By comparing the measurements in Figure 51 for multiple CTG address spaces to those with just one
address space (Figure 48 on page 115), it can be seen that using multiple address spaces greatly
increases the scalability of the CTG. This is due to the fact that reducing the number of threads per
address space reduces the CPU cost per ECI call and thus increases the overall efficiency of the CTG,
allowing higher throughputs to be reached.

7.3 Capacity planning for CTG Java applets

In this section we use the results of our previous performance tests to create a capacity planning
methodology for estimating the CPU usage of a Web-enabled CICS application using the OS/390 CTG
applets. We then use this methodology to estimate the CPU usage when the Trader application is Web-
enabled using CTG applets.

7.3.1 Capacity planning methodology

As illustrated in Figure 43 on page 105 , our Web-enabled applet design for Trader has an initial call to
open the connection from the applet to the CTG Java gateway application, followed by three ECI calls to
the TRADERBL CICS application, using a COMMAREA size of 372 bytes — thus giving a throughput
of 30 CICS tasks per second for our defined 10 business transactions per second.

The presentation logic will be implemented in the Java applet on the Web browser client, and as such is
not included as part of our capacity planning estimation.Thus the total OS/390 CPU costs per business
transaction running the Java applet Web-enabled Trader will be:

1. Cost of one request to open and close the applet CTG TCP/IP connection

2. Cost of three 372-byte COMMAREA ECI calls which re-use the TCP/IP connection

3. Cost in CICS of the requests to the business logic in TRADERBL

The cost of opening and closing a TCP/IP connection from a Java applet to the CTG are already known
from the data in Figure 49 on page 116 as 10 CPU ms per request.

The CPU cost for transmitting a given amount of data in an ECI COMMAREA can be calculated from
the data in Figure 50 on page 117 , by extrapolating from the two closest measured COMMAREA sizes.
We did not plot a linear fit equation for this data, since it can be seen that the costs do not increase in a
linear fashion.

The CPU cost of invoking the business logic in TRADERBL are already documented in Table 2 on page
45 . This cost will be 13 CPU ms per business transaction, since when using our CTG applet
architecture, only three calls are made to the CICS business logic

7.3.2 Capacity planning estimate

Using our capacity planning methodology we can estimate the OS/390 CPU usage when Web-enabling
the Trader application via the applet architecture:

1. Cost to open/close the applet CTG TCP/IP connection:

10 CPU ms per request

2. Cost of three 372 byte COMMAREA ECI calls:

3 * (12.4 + (((372-100)/(1000-100)) * (14.3-12.4))) = 39 CPU ms

3. Cost in CICS of TRADERBL:

13 CPU ms

CPU = total CPU consumed in OS/390 R55 LPAR Throughput is the number of ECI or Web
requests per second

Thus the total is 10 + 39 + 13 = 62 CPU ms per business transaction, for running Trader using a CTG
applet architecture on an R55 processor. Hence we can calculate the cost of running Trader at our
designated throughput of 10 business transactions per second to be 62 * 10 = 620 CPU ms.

Of this total 620 CPU ms for running Trader using CTG Java applets, we can estimate how much should
be allocated to the different OS/390 components. We do this by first deducting the known cost of 130
ms for the business logic in TRADERBL, and then using the relative proportions reported for each
component in our test results. We used our results from the 1000 byte TCP/IP test found in Table 109 on
page 199 . A throughput of 30.37 Web requests per second was chosen, as it is the closest to our defined
rate of 10 business transactions per second (or 30 CICS tasks per second). This is illustrated in Table
17 .

Table 17: CPU percentage breakdown for CTG applet Trader

7.4 Performance tests using CTG Java servlets
In the following section we show the results of our performance tests of Java servlets and the OS/390
CTG. You should be aware that the test scenarios and applications used were simplified in order to
quantify the configuration under analysis; the application tested was not a real life application such as
Trader.

7.4.1 Test environment

The test environment was equipped with sufficient hardware (processor, memory, DASD, network
bandwidth) to eliminate any constraints. The operating system was OS/390 V2.7. We used the CICS
Transaction Gateway for OS/390 V3.1, together with CICS TS V1.3, JDK V1.1.8, WebSphere
Application Server V1.1, and the OS/390 IBM HTTP Server v5.1. The test environment is illustrated in
Figure 52 on page 121 , and full details of the software levels and parameters in effect are listed in
Appendix A "Test environments" on page 161 .

Component Percentage of total per
component

CPU usage for 10 business transactions
(CPU ms)

CICS TRADERBL - 130 ms
CICS other 9.7% 48 ms

TCP/IP & VTAM 3.9% 19 ms
CTG Java gateway

application 64.8% 317 ms

OS/390 other 21.6% 106 ms
Total 620 ms

Figure 52: CTG servlet test environment.

7.4.2 Test methodology

The Web browser workloads were emulated using TPNS, this was achieved by capturing the network
flows of a sample CTG Web browser client and then replaying them at different throughputs. The TPNS
driver was running on a separate 9672-R55 processor within the sysplex so as not to interfere with the
OS/390 test image.

A range of five throughputs from approximately 30 to 100 Web requests per second were achieved by
varying the think time of the simulated Web browsers within TPNS. The number of Web users was set
100 for the servlet tests. The workload allowed to settle before a five minute measurement interval was
sampled using OS/390 RMF.

The application running in the CICS region was a minimal application, that is, the application received a
short COMMAREA (of 39 bytes), changed the last byte, and returned it. The reason for choosing such a
minimal application and small COMMAREA size, was that we wanted to show the amount of CPU
usage for invoking a CICS application from the Java servlet environment.

We ran tests to determine the costs of the following quantifiable components when using CTG Java
servlets:

l Creation of the HTTP connection

l Basic servlet cost

l Cost of an ECI call from within the servlet

Our servlet tests used a very simple Java servlet that sent back a minimal HTML reply to the HTTP
GET method used to invoke the servlet. We did not use Java server Pages (JSP), Visual Age Java(VAJ),
or the Common Connector Framework(CCF) in the development of our servlet, and if you do so you
should quantify any such additional costs incurred.

7.4.3 Test results

In this section we present a graphical summary of the performance measurements, in order to highlight
the important points and to provide the necessary information to perform a capacity planning estimation
of an application such as Trader.

OS/390 servlet JVM performance

You should be aware that new versions of the Web-enablement connectors (OS/390 Java Development
Kit, WebSphere Application Server, and CTG) are constantly being developed by IBM, each release of
which has historically shown significantly improved performance. The numbers presented here for
OS/390 CTG Java servlets are merely a snapshot in time, with expectation for continued improvements
in future releases. Refer to http://www.s390.ibm.com/java for the latest details.

Servlet using the ECI

First we analyzed the cost of CTG ECI calls to a simple CICS application from a servlet. This is
illustrated in Figure 53 on page 123 , detailed data for these measurements are shown in Table 121 on
page 204 . The figures plotted are the percentage usage of a single R55 CPU, with a maximum of 500%
available. The Web clients used persistent HTTP connections to communicate with the OS/390 Web
server. This graph shows good scalability at the workloads measured, and you can see that the majority
of the CPU used is incurred in the Web server address space, since this is the process that serves the
HTML pages and runs the JVM and the CTG Java methods.

Figure 53: CPU usage of CTG servlets

Servlet with no ECI call

Next we analyzed the cost of the same servlet but without the ECI call to CICS, in order to determine
the delta cost within the servlet of invoking the EXCI to pass the COMMAREA to CICS. The resulting
total CPU usage along with the CPU usage when invoking CICS is illustrated in Figure 54 ; the raw data
for these measurements can be found in Table 121 on page 204 and Table 123 on page 205 . The figures
plotted are the percentage usage of a single R55 CPU, with a maximum of 500% available. The Web
clients used persistent HTTP connections to communicate with the OS/390 Web server.

http://www.s390.ibm.com/java

Figure 54: CPU usage of servlets with and without the CTG

The graph shows that there is a significant cost associated with calling CICS from a servlet. This is 24%
of the cost of our test servlet or, on average, 8 CPU ms per Web request. This cost is unlikely to increase
significantly as the COMMAREA size increases, since the CTG uses the EXCI protocol to pass data to
the CICS region. The EXCI utilizes the CICS MRO protocol to pass data to CICS, either via cross
memory communication if the CTG and CICS region are within the same CEC, or via an S/390 coupling
facility if the CICS region is in a different CEC in the Parallel Sysplex. Both of these communication
mechanisms should have minimal costs.

Persistent HTTP connections

Next we analyzed the cost of the non-ECI servlet but measured the increase when persistent HTTP
connections were not used, in order to determine the saving of using persistent HTTP connections over
non-persistent HTTP connections. The resulting total CPU usage is illustrated in Figure 55 ; the figures
plotted are the percentage usage of a single R55 CPU, with a maximum of 500% available. The raw data
for these measurements can be found in Table 123 on page 205 and Table 124 on page 205 .

Figure 55: CPU usage of servlets with persistent HTTP connections

The graph shows that there is a saving associated with use of persistent HTTP connections of, on
average, 10% of the cost of invoking the servlet, or 2.7 CPU ms per call. We will use this figure later in
our capacity planning estimation. The data also suggests that at higher throughputs the usage of
persistent HTTP connections provides better scalability, since there is a marked increase in CPU usage

for the last data point with non-persistent HTTP connections.

7.5 Capacity planning for CTG Java servlets
In this section we use the results of our previous performance tests to create a capacity planning
methodology for estimating the CPU usage of a Web-enabled CICS application using servlets with the
OS/390 CTG. We then use this methodology to estimate the CPU usage when the Trader application is
Web-enabled using CTG servlets.

7.5.1 Capacity planning methodology

As illustrated in Figure 44 on page 107 , our Web-enabled servlet design for Trader has one initial call to
the servlet to build the signon page, and then three calls to the servlet which invoke the business logic in
the TRADERBL application — thus giving a throughput of 40 Web requests per second, and 30 CICS
task per second, for our defined 10 business transactions per second.

The CPU costs of invoking the business logic in TRADERBL are already documented in Table 2 on
page 45 . This cost will be 13 CPU ms per business transaction, since only 3 calls are made to the CICS
business logic. The presentation logic will be implemented in the Java servlet, but the cost of this is not
included as part of our capacity planning estimation, as the costs are indeterminate. These costs should
be quantified and factored into any servlet capacity planning estimation.

Thus the total OS/390 CPU costs per second for running the Web-enabled Trader application at a
throughput of 10 business transaction per second are:

1. Cost of initial request to invoke a servlet with no ECI call using a non-persistent HTTP
connection.

2. Cost of three requests which invoke the ECI using persistent HTTP connections.

3. Cost in CICS of the requests to the business logic in TRADERBL.

We can calculate the cost of the first call using the average of the CPU ms/request from our data in
Table 124 on page 205 (Servlets, non-persistent HTTP connection, no ECI) . This is 27 CPU ms.

The cost of the next three requests which invoke the ECI can be calculated using the average of the CPU
ms/request from our data in Table 121 on page 204 (Servlets, persistent HTTP connection, ECI) . This is
32 CPU ms per request.

The CPU costs of invoking the business logic in TRADERBL are already documented in Table 2 on
page 45 . This cost will be 13 CPU ms per business transaction, since when using our CTG servlet
architecture only three calls are made to the CICS business logic.

7.5.2 Capacity planning estimate

Using our capacity planning methodology we can estimate the OS/390 CPU usage for one Trader
business transaction. We will use a throughput of 40 Web requests per second, since this is the
throughput we wish to achieve.

1. Cost of initial request to invoke a servlet with no ECI call using a non-persistent HTTP
connection:

27 CPU ms

2. Cost of three requests which invoke the ECI using persistent HTTP connections:

32 * 3 = 96 CPU ms

3. Cost in CICS of the requests to the business logic in TRADERBL:

13 CPU ms

Thus the total is 27 + 96 + 13 = 136 CPU ms, for one Trader business transaction, and hence we can
calculate the cost of running Trader at our designated throughput of 10 business transactions per second
to be 136 * 10 = 1360 CPU ms.

Of this total 1360 ms, we can estimate how much should be allocated to the different OS/390
components. We do this by first deducting the known cost of 130 ms for the business logic in
TRADERBL, and then using the relative proportions reported for each component in our test results. We
used our results for servlets, persistent HTTP connection, ECI found in Table 121 on page 204 . A
throughput of 47.37 Web requests per second was chosen, as it is the closest to our defined rate of 10
business transactions per second (or 40 Web requests per second). This calculation is illustrated in Table
18 .

Table 18: CPU percentage breakdown for CTG servlet Trader

7.6 Trader performance comparison
Using the figures in Table 17 on page 120 and Table 18 on page 128 , we have compared the cost of
Web-enabling the Trader application using a CTG Java applet architecture and a CTG Java servlet
architecture. This is illustrated in Figure 56 .

Component Percentage of total per
component

CPU usage for 10 business transactions (CPU
ms)

CICS
TRADERBL 130

CICS other 4.6% 57
Web server 78.5% 966

TCP/IP & VTAM 1.5% 18
OS/390 other 15.4% 189

Total 1360

The figures plotted are CPU ms on an 9672-R55, for running 10 invocations of the Trader business
transaction. Thus 10 Trader business transactions equate to 30 Web requests or CICS tasks when using
applets, 40 Web requests but only 30 CICS tasks when using servlets, and 100 CICS tasks when using
3270 green screens.

Figure 56: CPU usage comparison for Trader via CTG

It should be borne in mind when comparing these figures that the Java servlet architecture is
fundamentally different from the applet architecture because the presentation logic is implemented
within the Java servlet which runs on OS/390.

The CTG applets figures assume usage of the CTG TCP/IP protocol and re-use of the TCP/IP
connection as discussed in "Cost of making the applet TCP/IP connection" on page 116 . We also do not
factor in any savings that workload balancing would give when using multiple CTG Java gateway
application address spaces, as found in "Multiple CTG address spaces and the TCP/IP protocol" on page
118 .

Chapter 8: Conclusions and recommendations
Overview
The objective of this redbook is to help you understand the performance impact of Web-enabling your
CICS-based applications, and to provide the necessary information to perform capacity planning
estimation. The redbook Revealed! Architecting Web Access to CICS , SG24-5466 explains the choices
available to you and helps you decide which is the best solution to choose. There are many factors
influencing this choice, but having considered which technical solution to adopt, it is important to ensure
that this solution delivers both the function and the performance you require.

In the previous chapters we have presented data from our test studies that demonstrate the CPU cost of
the different Web-enabling methods, and we have illustrated how to apply this data to a typical legacy
CICS COBOL application. In addition to the estimation processes, each chapter includes a general
discussion of the important factors affecting the performance of each solution and provides some
guidelines that will help you if you implement that particular solution.

In this chapter we will summarize the conclusions from our performance study and provide some

recommendations to improve the performance of your Web-enabled CICS application.

In Chapter 9 , "CICS Web capacity planning example" on page 153 we will go on to use our capacity
planning methodologies to tell a fictional story of how the "Trader company" Web-enabled its legacy
CICS application.

8.1 Interpreting the performance data
Although the studies presented in this book have been designed to give generally applicable results, they
may not be a good representation of your application. Any capacity planning estimate you use, whatever
the source, should always be verified on a test system before the application is put into production. If
your test system does not perform as well as you expected, check whether you have followed the
recommendations available. Try to understand which components are not working as well as you
anticipated. You may be able to use the data presented to determine that one particular component is
using excessive system resources. Don't just put your application into production, expecting it to fix
itself!

8.2 Analysis of results
A comparison of our capacity planning estimates for the CPU costs of Web-enabling our Trader
workload are shown in Figure 57 . The figures plotted are the total CPU ms used on an 9672-R55, for
running 10 Trader business transactions.

Figure 57: Capacity planning estimates to Web-enable the Trader application

When comparing the results of our capacity planning estimates the following points should be
considered.

l In our test to confirm our capacity planning estimate for a CWS directs connection we found that
our estimate was too low; refer to 5.3.3 , "Confirming our estimate" on page 81 for further details.

l In our CWS SSL capacity planning estimate we use minimal costs for SSL. There are many
different combination possible when using SSL; refer to 6.3.1 , "Capacity planning methodology"
on page 96 for more details.

l Our CTG servlets capacity planning estimate is based on a simple servlet with only minimal

presentation logic. Additional presentation logic such as the use of JSPs will need to be factored
into your capacity planning estimates; refer to 7.4.2 , "Test methodology" on page 122 for more
details.

l These figures are a snapshot taken at the time of this study. IBM is constantly striving to improve
the performance of its Web-enablement and Java technology; refer to
http://www.s390.ibm.com/java for more details.

All of the methods of CICS Web-enablement detailed in this book demonstrate the functionality and
scalabilty of these OS/390-based solutions. This is shown by the general linear nature of the results
shown. These studies have been performed with simple applications that have been designed to be
generally applicable. As we have shown with our Trader application analysis, these results can be
applied to give approximate costs for Web-enablement, but these estimations should used in conjunction
with measurements of your own applications in a test environment.

Remember that the business logic, the processing in the CICS application of the business requests to
update the business data, are largely unaltered by the changes in presentation logic. The same kinds of
requests, to do the same kinds of work, are still going to be received by the business logic; it is the way
that the results are viewed by the user that has changed. The main elements of capacity planning for
such a change involve understanding how much extra it may cost, in which components of your systems
is the cost to be applied and, if your current system cannot support such an increase, what upgrades you
should consider.

It should be remembered that increased functionality will cost more to support; the old adage "there is
no such thing as a free lunch" remains true, even when Web-enabling. For example, using the 3270 Web
bridge is considerably more costly than using the CWS with new Web-aware presentation logic, but
using the 3270 Web bridge does not require the application changes that the new Web-aware application
would.

In the following sections, we discuss each of the CICS Web-enabling technologies in the light of our
results.

8.2.1 CWS

The observations and recommendations given in this section apply to CWS support in general, either via
the 3270 Web bridge or via a Web-aware application design. You should also note that a significant
number of improvements to CWS were introduced in CICS TS V1.3. The main performance items of
interest are the introduction of persistent HTTP connection support, the ability to store HTML templates
in memory, and the removal of the 32KB restriction for a single CWS request. Functional improvements
include the introduction of the CICS WEB and DOCUMENT APIs and the implementation of SSL
support for a CWS direct connection.

Direct connection

Using a direct connection with the CWS uses less total CPU than using the WebServer Plugin; this is to
be expected, since the instruction path-length is much shorter and there in less inter-process
communication involved. However, it does use more CPU within the CICS address space than using the
WebServer Plugin, which could be a disadvantage if your CICS address space is CPU constrained.

CICS WebServer Plugin

http://www.s390.ibm.com/java

Using the WebServer Plugin does cost a bit more than using a direct connection. This extra cost is
incurred within the Web server address space and includes the CPU usage of the CICS supplied CWS
WebServer Plugin, which replaces the function of the CICS sockets listener. The extra cost should be
borne against the extra functionality provided by the Web server. Using the Web server may be the
preferred option if you wish to combine calls to different OS/390 servers, or want to isolate your CICS
system from direct Web access, or off-load some of the CWS processing to the Web server.

The CWS WebServer Plugin uses an External CICS Interface (EXCI) connection to communicate with
the CICS region. You can verify that this connection has sufficient sessions or pipes allocated by using
CICS statistics reporting.

Network design

Good network design and capacity is vitally important to a successful Web-enablement. The response
times in CICS are going to be a small contributor to the overall response time. Most of the user-
perceived response time from a Web browser will depend on network response.

HTTP datastream

In our tests we found the costs of transmitting data over HTTP connections increased linearly with size,
and at small sizes (a few KB), were only a small fraction of the costs involved. You should be aware that
the HTTP headers are added to the data to be transmitted, and this can mean that an additional 200–300
bytes is added to the data actually transmitted. CICS monitoring information records the size of HTTP
datastreams at a transaction level (for more information, look at the DFHWEBB performance data group
described in the CICS Performance Guide , SC33-1699).

Persistent HTTP connections

Using persistent HTTP connections will reduce the overall cost of transmitting data over HTTP
connections. However, be aware that when using a direct connection there will be a long-running Web
attach transaction (CWXN) for every active connection. These will be terminated by the Web browser or
when the SOCKETCLOSE time-out interval in the TCPIPSERVICE definition is reached. When using
persistent HTTP connections, you should consider whether the number of long-running tasks can be
supported compared to the amount of CPU time you save by using persistent connections. You can use
the SIT parameter MXT and add the Web attach transaction (CWXN) to a TRANCLASS with a
MAXACTIVE setting to stop Web-based requests from flooding your CICS region.

Restricting TCP/IP requests into CICS

As well as limiting Web requests into CICS by limiting the number of active tasks, you should consider
the number of requests you are prepared to have buffered by TCP/IP. Specifying the BACKLOG
parameter in the TCPIPSERVICE definition will limit the number of requests held by TCP/IP. Make
sure that the TCPIP SOMAXCONN parameter (the maximum number of pending connection requests
queued for any listening socket — the default is 10) is greater than or equal to the BACKLOG setting.

TCP/IP buffer sizes

Set TCP/IP buffer sizes large enough to contain the largest data transfer expected. In our tests,
TCPSENDBFRSIZE and TCPRCVBUFRSIZE were set to 65536. These parameters are documented in
OS/390 V2R7.0 eNetwork CS IP Configuration , SC31-8513, along with advice not to over-allocate

buffer space. However, in our tests we found no significant difference in CPU usage compared to using
smaller buffers with smaller data exchanges, but we benefited from better network responses.

HTML template support

HTML template support has been greatly improved in CICS TS V1.3. You are no longer restricted to
storing these templates in the DFHHTML PDS; now you can use DOCTEMPLATE definitions to locate
them in many kinds of CICS-managed storage. The best performance is achieved by defining them as
programs; details on how to do this are given in the redbook CICS Transaction Server for OS/390
Version 1 Release3: Web Support and 3270 Bridge , SG24-5480.

CWS temporary storage queue placement

The TSQPREFIX referred to in the CICS TCPIPSERVICE definition gives you the opportunity to
choose the location of the CICS temporary storage queue (TSQ) that will be used to hold the data
exchanged with the Web client. The best performance will be achieved if this TSQ is defined as MAIN
storage. However, if large amounts of data are to be exchanged, it might be appropriate to make this
storage AUXILLIARY. Note that using AUXILLARY storage queues will result in the data being
stored on DASD. This will increase disk I/O and may therefore increase end user response times.

8.2.2 CWS and 3270 Web bridge

This section deals with the CWS factors affecting performance of the 3270 Web bridge. You should also
refer to the general advice on CWS given in 8.2.1 , "CWS" on page 133 .

Pseudo-conversation length

The key factor when using the 3270 Web bridge is the length of the associated 3270 pseudo-
conversational chain. This is because the 3270 bridge facilities and state data are created at the
beginning of each pseudo-conversation and then destroyed afterwards. The longer the pseudo-
conversation lasts, then the less management of bridge facilities and the less state data is needed.
However, there is no benefit to be gained in deliberately lengthening a pseudo-conversational chain; you
should only consider merging separate pseudo-conversations into one.

Size of HTTP datastream

The amount of data transmitted per 3270 screen image is not such an important factor when estimating
CPU usage with the 3270 Web bridge. This is because the average amount of data representing a 3270
screen image shows little variation, and in any case, is relatively small (about 2KB). In our
investigations in Chapter 5 , "CWS with Web-aware presentation logic" on page 65 , we showed that
sending such relatively small amounts of data is only a small proportion of the overall CPU costs of
using CWS. More important factors are the number of CICS tasks and whether or not HTTP persistent
connections are used.

8.2.3 CWS with Web-aware presentation logic

This section deals with the factors affecting performance of CWS when using new Web-aware
presentation logic. You should also refer to the general advice on CWS given in 8.2.1 , "CWS" on page
133 . Note that our capacity planning estimate for Trader using the CWS with Web-aware presentation
logic was somewhat less than that measured for the actual Trader application; refer to 5.3.3 ,

"Confirming our estimate" on page 81 . We believe this to be because the Trader Web-aware logic
contains additional logic such as building templates and storing state data. Such costs should be factored
into any of your capacity planning estimates by careful measurement.

Size of HTTP datastream

The size of the HTTP data stream does affect the CPU usage of the CWS and is covered in more detail
in Chapter 5 , "CWS with Web-aware presentation logic" on page 65 . However, as can be seen from the
equations in Figure 34 on page 77 , the cost is a relatively small component if only a few KB of data are
transmitted as in our Trader application. In this case it is more important how many CICS tasks run,
since the dominant cost is the null or fixed cost. Since much larger amounts of data can now be
transmitted in CICS TS V1.3, then the cost of data transfers can become significant. It was also
discovered in our tests that the sending of data using CWS is significantly less expensive than the
receiving of data.

Programming considerations

We recommend using the new DOCUMENT and WEB APIs provided in CICS TS V1.3 when creating
new Web-aware presentation logic. This makes HTTP presentation programming much easier than
before when using the COMMAREA manipulation technique. In our test results there was little
difference in costs between using the WEB API and using COMMAREA manipulation (see Figure 31
on page 74).

The CICS Web Interface (CWI) in previous releases of CICS recommended running your Web-aware
presentation logic in the converter phase (this was intended to ease access to HTTP data areas which are
now readily accessible using the WEB API). This is no longer necessary, and by running your Web-
aware presentation logic as a normal CICS program, this gives a small additional benefit of saving a
CICS LINK call.

8.2.4 SSL with CWS

CTS V1.3 uses the system SSL toolkit, part of OS/390 V2.7. Make sure you have the current System
SSL and Web server or CICS TS V1.3 service applied if you wish to use this function.

There are two processes that SSL supports: handshaking to establish a secure connection, and data
transmission over this secure connection.

8.2.4.1 Handshaking

SSL handshaking is likely to the be most CPU intensive part of using SSL. In our capacity planning
estimate SSL handshaking accounted for 82% of the SSL costs in our business transaction. Therefore in
order to reduce the costs of SSL you should design your application to have the lowest handshaking
costs possible, with regard to any security considerations you may have.

A full handshake is the most CPU-intensive phase of SSL and is performed at the start of each SSL
session. An SSL session may be re-established when a client makes a new HTTP connection. This is
achieved by passing the previous SSL session ID to the server. An SSL session ID remains valid for a
period determined by the server; in the case of CTS V1.3 this time-out period is defined by the SIT
parameter SSLDELAY. If an SSL session is re-established by this method then a shorter or "null" SSL
handshake is performed, which is considerably less CPU intensive. The value of SSLDELAY in the SIT

should be set as high as possible, with regard to any security concerns you may have about the time an
SSL session ID may remain unused but secured.

The use of the S/390 Cryptographic Coprocessor Feature was very successful in reducing the CPU costs
associated with the full handshake, particularly when client certificates or the larger 1024 bit server key
was used. If you are not able to use the Cryptographic Coprocessor Feature, the use of the smaller 512
bit server key will reduce the cost of the full SSL handshake. The use of persistent HTTP connections
ensures that after a full or null SSL handshake, no other SSL handshaking is performed until the
persistent HTTP connection is broken. In CICS, a persistent HTTP connection will be broken either
when CICS times-out the connection according to the SOCKETCLOSE value in the TCPIPSERVICE
definition, or when the Web browser terminates the connection.

Note that although we did not test the usage of the Cryptographic Coprocessor Feature with SSL
handshaking and the CICS WebServer Plugin, the OS/390 Web server can utilize Cryptographic
Coprocessor Feature in the same way as we demonstrated for the CWS direct connection.

TCBs

SSL support in CICS TS V1.3 uses a pool of TCBs dedicated to SSL work, the S8 TCBs. The number of
S8 TCBs is specified using the CICS SIT parameter SSLTCBS. Each new TCB occupies an amount of
storage below the 16MB line. Thus if your CICS DSA usage is critical (for instance, you have lots of old
24 bit programs) you may be restricted to the number of S8 TCBs your system can support. CICS
monitoring and statistics data can be used to measure the amount of CPU time these TCBs use.

TCB stealing

All forms of the SSL handshake are expensive but good scaling was evident for all variations of the
handshake in CTS 1.3. The amount of full handshakes should be minimized to reduce CPU usage by
using persistent HTTP connections and sufficient S8 TCBs.

You should be aware that once the number of attached SSL clients exceeds the number of defined SSL
TCBs in a CICS region, then subsequent HTTPS requests will 'steal' the least previously used SSL TCB.
Since there is a one to one affinity between a HTTPS session and an individual SSL TCB, then TCB
stealing will cause Web browsers that send a subsequent HTTPS request to CICS to incur the additional
cost of an SSL null handshake and the creation of a new HTTP connection

8.2.4.2 Data transmission

Once the SSL handshake has been performed and the Web client and target CICS region maintain a
persistent HTTP connection, data transmission is the only additional cost to SSL operation. In our
capacity planning estimate the SSL data transmission accounted for only 18% of the SSL costs but you
may experience a higher percentage than this, if you transfer larger datastreams or if you have lower
SSL handshake costs.

The Cryptographic Coprocessor Feature supports data encryption using the DES or Triple DES ciphers,
and can be used with either the CWS direct connection or the CICS WebServer Plugin. In our tests we
quantified savings when transferring data using the triple DES cipher. We also found that using the
RC4-MD5 bit cipher with either the 40 bit or 128 bit key cost the same in terms of OS/390 CPU usage,
and also cost less than the use of the triple DES cipher using cryptographic hardware. The reason that
the RC4-MD5 40 and 128 bit ciphers cost the same is because they both pass a 16 byte key length into

the encryption algorithm. The difference is that 40 bit encryption uses 'salted' (unencrypted random data)
as part of key-block used to generate the 16 byte key. This reduces the strength of the encryption, but the
path length remains the same.

8.2.5 CICS Transaction Gateway

In this section we shall examine the principal factors affecting CPU usage when using the CTG.

Java support

Java support in OS/390 is being continually improved. You will receive significant performance benefits
from being at the most recent levels of OS/390 (with the associated Java Development Kit, TCP/IP and
WebSphere Application Server versions).

8.2.5.1 Java applets

This section discusses the important factors when using a CTG applet architecture.

Network protocol

The network protocol used to connect your applet to the CTG Java gateway application will have a
significant effect on system performance. This is illustrated in our test results (Figure 49 on page 116)
where we found the CTG TCP/IP socket protocol performed better than the CTG HTTP protocol. You
may, however, choose to use HTTP for its ease of routing, since HTTP flows are much easier to route
through an HTTP application proxy server in a firewall.

Both the CTG HTTP and TCP/IP protocols allow for connection reuse, whereby the connection from the
applet to the Java gateway application is kept open for the duration of several External Call Interface
(ECI) calls. Figure 49 on page 116 demonstrates the considerable saving this has for data transfers using
the TCP/IP protocol. The HTTP protocol will also experience a saving with connection re-use, but you
should be aware that the CTG HTTP protocol handler does not support persistent HTTP connections.
This means that even if the CTG HTTP connection is re-used across ECI calls there will still be a new
underlying TCP/IP socket open and close for every HTTP request.

Applet data transmission

The size of the ECI COMMAREA has a significant effect on CPU usage in the Java gateway application
as shown in Figure 50 on page 117 , and thus reduction of data transmitted is an important performance
factor. There are techniques to reduce the amount of data passed, which fall into three broad categories:

1. First, you should design the application so it has the minimum number of data flows from the
Web client through to the CICS server. Your options may be limited by the existing interface
offered by your CICS application, and your ability to re-engineer these interfaces.

2. Second, you should design the application to transmit only the data essential to the Java
application, that is, only the data that it directly needs for its presentation or business logic.

3. Third, you can compress or truncate the data flowed across the network.

Data truncation facilities are built into the CICS Transaction Gateway and CICS client-server flows and

can be easily invoked as follows:

l The CICS Transaction Gateway provides two methods for limiting the amount of data transferred
when using ECI calls from an applet. The setCommareaOutboundLength method controls how
much of the CICS COMMAREA will be flowed from the applet to the Java gateway application;
and the setCommareaInboundLength controls how much of the COMMAREA returned by CICS
is flowed from the Java gateway application to the applet. Note that these calls do not affect the
actual length of the COMMAREA returned to the application, just the amount of the
COMMAREA sent across the network. You should always design these calls into your applet
code if you wish to minimize the data sent from the applet to the Java gateway application.
Without these calls, the whole string representing the COMMAREA will be transmitted, including
any trailing null characters. Note that these methods were not used in our testing.

l The CICS External Call Interface (EXCI), in combination with the CICS Inter System
Communication (ISC) code, provides truncation for EXCI flows. Any trailing nulls are not
physically passed from the client process to the CICS region. This truncation is automatic and not
configurable. It is appropriate when transmitting data from CEC to CEC in a Parallel Sysplex,
since this involves network communication by means of the sysplex coupling facility. Thus you
should design your CICS COMMAREAs to be padded with trailing nulls and to store data
efficiently in the beginning of the COMMAREA.

Data compression is applicable when the system is network I/O bound and yet still has CPU cycles
spare. This was not investigated in our performance studies, but other internal IBM studies have shown
that savings are only likely to occur if many clients are trying to transfer large amounts of data over a
low bandwidth network. In most normal circumstances, using data compression will only add to the
CPU usage in the OS/390 system.

l The CICS Transaction Gateway security exits can be used to compress data instead of, or as well
as, encrypting data. The data is compressed as it leaves the applet and uncompressed as it enters
the Java gateway application. Examples of how to use these exits for data compression are given
in the ClientCompression.java and ServerCompression.java samples in the
samples\Java\com\ibm\CICS Transaction Gateway\security directory, and a working example is
given in CICS Transaction Gateway with More CICS Clients Unmasked , SG24-5277.

Figure 58 illustrates the possible points for data compression and truncation, when using an ECI based
Java applet via the CICS Transaction Gateway to a CICS server.

Figure 58: Data compression using CTG applets

If using the servlet architecture, it is only possible to reduce the data transmission at the point where the
data flows from the CICS Transaction Gateway to the CICS Server, since the CICS Transaction
Gateway methods are executed within the Web Server.

Whatever architecture you use, it is best to compress the data as early as possible in the life cycle of the
data to reduce the flows through the different components. If encrypting data, you should ensure that
this is performed after any compression routines for reasons of efficiency.

The items above are described in more detail in the "Performance and Scaling" chapter of Revealed!
Architecting Web Access to CICS , SG24-5466.

Thread usage

The CTG Java gateway application is a multi-threaded Java application. These threads are held in two
pools, connectionManager threads and worker threads. A connection thread is needed for every
connected Web client, and a worker thread is needed to process the ECI request to CICS. The number of
threads the Java gateway application uses is defined by the Maxconnec t and Maxworker parameters
contained in the CTG.INI file. This is described further in "CTG thread usage" on page 108 .

It was found in our tests that the Java gateway application could not use more than 150 CPU% out of the
500% available on our R55 CEC. Increasing thread counts had no further effect on the systems
utilization or throughput. We recommend that you consider using TCP/IP port sharing to distribute work
across multiple Java gateway applications if you need to increase throughput in such circumstances. As
is shown in Figure 51 on page 118 , using TCP/IP port sharing and multiple Java gateway application
address spaces can give a highly scalable architecture when using the CTG. The point at which the CTG
Java gateway application may become thread constrained will depend on several factors and can only be
determined by experimentation. However, one of the principal factors is the longevity of the call to the
CICS application, since this will have a bearing on the worker thread usage within the Java gateway
application.

The number of concurrent EXCI calls that the Java gateway application can make to a CICS region is
determined by the number of pipes (sessions in the CICS definition) defined on the EXCI connection to
be used. A maximum of 100 can be defined, but it is unusual to find in practice that anywhere near this
many are in concurrent use. You can use CICS statistics to determine use count of these sessions or
pipes. If you have long-running programs in the CICS region, you are more likely to need more pipes.

8.2.5.2 Java Servlets

In this section we will discuss the important performance factors when using a CTG servlet architecture.

Java logic

The servlet is essentially Java code executing within the OS/390 JVM that builds and sends HTML to
the Web Client. There are certain Java functions that are expensive to execute, string handling for
example, so bear in mind that you must pay the cost of executing the Java presentation logic in the
servlet. This is the primary reason why the CPU usage of the servlet test scenario was considerably
higher than that of the Java applet test scenario.

Note that when developing servlet presentation logic you should consider that a complex servlet HTML
GUI will require the re-transmission of the complete HTML page for every Web request. You may
therefore want to reduce the size of servlet data transmissions by developing a less complex GUI.

An advantage of the servlet architecture over the applet architecture is the ability to condense multiple
ECI calls to a CICS region into one Web user response using new business logic implemented in the
servlet. In our tests we found that the ECI call within servlet was only 24% of the total servlet cost, thus
using new business logic to condense multiple servlet calls into one Web request may well give large
overall savings. We did not exploit this feature in our capacity planning model with Trader, since every
user Web request drove one ECI call.

Servlet data transmission

With the servlet architecture there are two network connections:

l The connection from the Web browser to the Web server via HTTP

l The connection from the Web server to CICS via the EXCI

The IBM HTTP server provides for persistent HTTP connection support, and in our tests we found a
saving of about 10% when enabling persistent HTTP connections. This is illustrated in Figure 55 on
page 125 .

The connection between the servlet and target CICS region is via the EXCI. This uses the CICS MRO
function. MRO functions are a very efficient cross-system communication mechanism, that can use
cross-memory communication between partners in the same MVS image, or (cross coupling facility)
XCF functions between partners on different members of a sysplex. Thus the points outlined in , "
Applet data transmission " on page 140 should be considered. However, you should note that the CTG
method setCommareaInboundLength has no effect within the servlet environment, since the
communication from the CTG to the Java application is all within the Web server address space. Also
note that the setCommareaOutboundLength method can be used to reduce the length of the
COMMAREA sent from the servlet to the CICS region, which may be appropriate with large amounts
of data transferred.

Thread usage

The Web server servlet engine is a sophisticated multi-threaded environment within which the CTG Java
methods are invoked. You should make sure that the Web server has sufficient threads to support your
workload. WebSphere Application Server provides a graphical monitoring function that enables you to
determine thread usage.

However, the same considerations apply as they did to the CTG Java gateway application threading
model discussed in the applet section " Thread usage " on page 143. If you experience an inability to
increase throughput beyond a certain point, we would recommend using the OS/390 Web server in
scalable mode, whereby multiple address spaces are created based on the rate of Web requests.

Additional costs are likely to be incurred if larger data streams are returned from the servlet to the Web
browser, since these must be processed by the Web server and TCP/IP. Also, if more complex Java
presentation logic is implemented in the servlet, additional costs are also likely to be incurred. This
depends on processing of the COMMAREA within the servlet to produce output for inclusion in an

HTML page; this cost is not factored into our capacity planning study.

Apart from these CICS-specific items, you should also be aware of more general servlet performance
considerations, such as those discussed in OS/390 e-business Infrastructure: IBM WebSphere
Application Server 1.1 - Customizing and Usage , SG24-5604.

8.3 Using too much CPU
Multi-tasking in an S/390 environment is achieved by using multiple TCBs, or if using UNIX System
Services, by using multiple threads. A multi-TCB or multi-threaded design enables an OS/390 address
space to utilize more than one processor concurrently in a multi-processor CEC. The OS/390 CTG and
the OS/390 Web server are both multi-threaded UNIX System Services applications.

However, for a CICS region, the majority of the processing occurs in one TCB, the QR (Quasi Re-
entrant) TCB. Additional processing occurs in the RO TCB, when opening and closing CICS data sets
and making calls to RACF, the FO TCB, when opening and closing user data sets, and optionally (when
the SUBTSKS SIT parameter is set to 1), the CO TCB for processing concurrent operations like VSAM
requests.

While this is still true for the business logic in a CICS Web application, the design of CICS Web support
utilizes two additional TCBs to handle TCP/IP sockets and a configurable number to handle SSL related
work. The CICS Performance Guide , SC33-1699, describes how to determine if a CICS regionis
approaching maximum capacity using CICS statistics reports and RMF records. This method requires an
analysis to determine how busy the different TCBs used by the CICS region are. If any single TCB
approaches 70% busy, then this CICS region is reaching maximum capacity.

The CPU used by specific CICS TCBs is of particular interest if you are using a direct connection to
CICS Web support or using the 3270 Web bridge, since the CPU consumption within CICS is likely to
be considerably higher in these cases. However, it can happen in such a region that the overall CPU
consumption exceeds that of one single processor without the CICS region actually being processor-
constrained. For example, we show an extract from a statistics report in Figure 59 for one of our SSL
test measurements.

Figure 59: CICS dispatcher statistics extract

This figure gives details for a CICS region supporting Web connections with SSL support, and shows
the following CPU% usage by TCB mode:

l 3.0% QR (quasi-reentrant)

l 0.7% SL (sockets listener)

l 0.1% SO (sockets requests)

l 116.7% S8 (SSL - using up to 70 TCBs)

You can see from the Accum CPU Time/TCB column that the CICS region used over 365 CPU seconds
during a 303 second collection interval (which equates to 120% CPU), even though the traditionally
critical QR TCB used only 9 CPU seconds (3% CPU). This data was from a specific SSL test and thus is
by no means representative of normal CICS usage.

8.4 Balancing the CICS Web workload
Not only will you have to consider the additional cost that each business transaction may incur by
implementing Web-based access, you will also need to pay attention to the response times perceived by
the end user. If that user is connecting through the Internet, much of the network transport time will be
beyond your control. In addition to the CPU utilization and response time you should also consider the
impact Web-enablement will have on transaction rates. Are you going to make the application available
to a larger group of users?

If access is by an intranet connection, then the potential group of users will be restricted to those within
the intranet boundary; probably the same group of employees that would currently use the application
using 3270 terminals. If the Web-enablement has widened the user group, then the additional costs of
running the business application more frequently must be planned for.

Access by an extranet connection, two communicating intranets, allows access to the business
application by a wider group of users. This is likely to happen where the extranet is allowing two
companies to access the same application, such as a supplier company checking the state of another
company's stock.

Access by an Internet connection would open up the CICS application to a potentially enormous group
of users. The attempted access to the business application from an unrestricted Internet base of users
could flood the target CICS system. It is possible to limit the number of requests that one CICS region,
CTG Java gateway application, or Web server address space will allow to connect. However, slow
response or rejected requests will not be what the user wants.

A better solution is to ensure that your system is scalable, and in an OS/390 Sysplex environment, this
means considering forms of workload balancing. Figure 60 shows how different OS/390 components
can fit together to provide a scalable server environment.

l TCP/IP port sharing enables multiple CICS regions on the same MVS image to accept incoming
HTTP requests sent to a single, shared port number. CTG Java gateway applications and Web
servers may also exploit this function.

l TCP/IP Dynamic DNS allows multiple CICS regions in the same sysplex to listen for requests
sent to a generic hostname and port number. It can exploit OS/390 Workload Management to
balance the workload across these systems within a sysplex.

l Multiple CICS regions controlled by CICSPlex SM can manage requests originating from HTTP
requests. The ability to dynamically workload manage Distributed Program Link (DPL) calls
within CICS TS V1.3 will greatly benefit such a configuration.

Figure 60: Components to provide workload balancing

The following manual is a good source of reference on OS/390 workload management: MVS Planning:
Workload Management , GC28-1761.

For information on balancing work in a CICSPlex, refer to CICSPlex: SM Concepts and Planning ,
GC33-0786

For information on dynamic DNS, refer to OS/390 eNetworks Communications Server: IP Planning and
Migration Guide , SC31-8512.

For information on TCP/IP Port sharing, refer to the Communications Server: IP Configuration
Manual , SC31-8513.

8.5 Key points to consider
We have demonstrated in this book that for each of the Web-enabling alternatives presented, CICS
Transaction Server V1.3 and other supporting software can provide a scalable solution. To summarize
the main points of our studies, you need to address the following points as they relate to your
application.

Separation of business and presentation logic

Can you separate the presentation and business logic in your existing CICS application and size the
business logic costs?

If you cannot separate the presentation and business logic, you will need to consider a 3270 based option
such as the CWS 3270 Web bridge, a non-OS/390 CTG using the EPI classes, or Host On-Demand. This
redbook only gives information on the performance of the 3270 Web bridge. Note that if you can
separate the business logic, this will give you more Web-enabling options and allow usage of solutions
which are less CPU intensive and scale better.

CWS 3270 Web bridge

If you intend using the 3270 Web bridge, how long are the pseudo-conversations in the business
transactions? Business transactions comprising short pseudo-conversations use more bridge facilities
than longer pseudo-conversations, so they are proportionately more expensive.

CWS with Web-aware presentation logic

If you intend using CWS with Web-aware applications, do you know your HTTP send and receive sizes,
since these have a significant affect on performance?

CWS with SSL

If you intend to use SSL to secure your CWS solution, your SSL handshake costs are likely to be the
most CPU intensive part of the solution. You can reduce SSL handshake costs by:

l Using persistent HTTP connections

l Using the S/390 cryptographic hardware

l Enabling SSL session ID-reuse

OS/390 CTG

If you intend to use applets and the OS/390 CTG, you should use the CTG TCP/IP protocol if possible,
and re-use the TCP/IP connection across ECI calls. You should minimize the amount of data transmitted
in the ECI COMMAREA wherever possible.

If you intend to use servlets, you will need to use a servlet engine such as WebSphere Application
Server. Ensure that you have enough threads defined for this server and that your Java presentation logic
is efficient. Consider using new business logic in your servlet to combine the results of multiple ECI
calls to reduce the number of network transmissions.

Workload management

Take into account the increased workload likely to be put upon your target OS/390 system. You may
need to implement a form of workload management to handle the increased CPU usage or to eliminate a
single point of failure.The OS/390 TCP/IP port sharing or Dynamic DNS features enable you to balance
work across multiple CICS Web owning regions, CTG Java gateway applications, or instances of the
OS/390 Web server.

Make sure that your network is capable of handling the projected extra work; any delays in the network
are likely to significantly increase end user response times.

Check your Web-enabled application operation and performance on a test system. Use monitoring and
statistics to verify your planning information.

Chapter 9: CICS Web capacity planning
example
Overview
In this section we tell the fictional story of the Trader Company, and the capacity planning decisions it
made when Web-enabling its CICS Trader application.

The Trader Company is a share trading corporation that runs its key business application on an OS/390
system using CICS. It is considering migrating this system to an e-business infrastructure and, as a first
step, would like to enable access to its Trader application from a wider range of users than its traditional
brokers who used only 3270 devices. We follow the steps the Company takes on this e-business path. It's
a simple story, but the elements are applicable to more complex cases, too. Each step includes an
estimate of the increase in systems usage as demand for the application increases, which are reported as:

l Throughput — the number of business transactions per second expected

l CPU usage— the amount of CPU time in ms estimated to be needed to support the transaction
rate expected

l Target system usage — the percentage of the total CEC capacity the CPU usage represents, for
the machine model specified

9.1 The 3270-based business
The Trader Company runs a CICS application, Trader, to buy and sell shares. In its original form, this
application is accessed by users connected to a CICS region using a 3270 terminal.

From our measurements presented in Chapter 4 , "CWS with the 3270 Web bridge" on page 51 we know
the cost of a single business transaction using 3270 access. These costs are shown in Table 19 .

Table 19: Single business transaction using 3270 access

l Throughput — 10 business transactions per second

l CPU usage — 372 CPU ms

l Target system — 7% CEC of 9672-R55

9.2 Web access using CWS with the 3270 Web bridge

CICS TRADERBL CICS other VTAM &TCP/IP CTG Web server OS/390 other Total
17.1 9.2 1.5 - - 9.4 37.2

The Trader Company acquires another Company and needs to offer the Trader application to the clients
of their new Company. They have two options, either to extend their 3270 network or to make the
Trader application accessible from the Web browsers that every employee has on their workstations.

The Web-enablement strategy for the Trader application is still to be decided, but meanwhile the
Company decides to implement a tactical solution, one that will solve the problem now but can be
replaced by a longer term strategic solution at a later date. This tactical solution for Trader is to use
CICS 3270 Web bridge to give access to all employees of the Trader Company through their Company
intranet. No new applications are needed, and the Trader application requires no changes to be Web-
enabled in this fashion. No particular skills in HTML or Web servers needed, but approximately double
the number of requests are anticipated.

From our measurements presented in Chapter 4 , "CWS with the 3270 Web bridge" on page 51 we know
the cost of a single business transaction using the CICW Web bridge. These costs are shown in Table
20 .

Table 20: Single business transaction using CWS with the 3270 Web bridge

l Throughput — 20 business transactions per second — a doubling in the throughput.

l CPU usage — 2612 CPU ms — note that this exceeds the capacity of one CPU, and that most of
that CPU usage is by CICS. There are a number of solutions possible to support this demand on
the same processor. For example, create two CICS regions that can handle incoming requests
through TCP/IP port sharing. Although no application changes are needed, some systems
configuration work will be. Refer to 8.3 , "Using too much CPU" on page 146 for further details
on solutions to this situation.

l Target system — 52% CEC of 9672-R55.

9.3 Web access using CWS with Web-aware presentation logic
The Web-enablement strategy for the Trader Company is beginning to take shape. There is further
growth expected for the Trader application, and the Company is growing Web skills. Web page and
HTML design is now understood by the application development group. The 3270 bridge solution
works, but it has an expensive bridge layer and still looks like a 3270 screen.

To give the Trader application a better Web look and feel, the 3270 presentation logic in CICS is
replaced by a new CICS Web-aware logic. This can not only use HTML but can also be used to create
new paths to the business logic. For example, in the case of Trader, drop-down boxes are used to
provide a Company selection, and the ten CICS tasks it took to execute the business transaction with a
3270 interface are reduced to five with the Web-aware presentation logic.

From our measurements presented in Chapter 5 , "CWS with Web-aware presentation logic" on page 65
we know the cost of a single business transaction using a direct connection using CWS. These costs are
shown in Table 21 .

CICS TRADERBL CICS other VTAM & TCP/IP CTG Web server OS/390 other Total
17.1 92.8 17.3 - - 3.4 130.6

Table 21: Single business transaction using CWS and Web-aware logic

l Throughput — 20 business transactions per second.

l CPU usage — 770 CPU ms, which is a substantial reduction compared to the previous CICS Web
bridge solution. At these levels of system usage, multiple CICS regions are not necessary, but may
just as well be kept for future growth or to improve application availability (by having more than
one CICS region available to service any requests).

l Target system — 15% CEC of 9672-R55.

9.4 Web access using CWS and the CICS WebServer Plugin
The Trader Company is facing increasing demand for its Trader application, and it decides to invest
further in its Web support. It has implemented the OS/390 Web server on its OS/390 Sysplex and has
produced a standard format for its Company Web pages (such as including Company graphics, help and
e-mail contacts). CICS provides a very effective way of accessing business logic from Web browser
clients, but is not intended to provide full Web server facilities.

The Trader Company decides to update the presentation logic of the Trader application to meet
Company standards, and to have the Web server provide the more complex graphics needed as it can
efficiently cache such data. They also decide to start using the CICS WebServer Plugin, since this will
reduce the load on their CICS region, even though the overall CPU cost increases.

From our measurements presented in Chapter 5 , "CWS with Web-aware presentation logic" on page 65
we know the cost of a single business transaction using a WebServer Plugin. These costs are shown in
Table 22 .

Table 22: Single business transaction using CWS with WebServer Plugin

l Transaction rates — 30 business transactions per second.

l CPU usage — 2274 CPU ms, of which only 822 ms is within CICS — just within the capacity of
a single CICS region, should their load balancing system fail.

l Target system — 45% CEC of 9672-R55.

.5 Web access Using CICS Transaction Gateway and applets
The corporation now takes the strategic step of using Java to Web-enable its Trader application. By
coding the presentation logic as an applet, the Trader Company can also include all sorts of other

CICS TRADERBL CICS other VTAM & TCP/IP CTG Web server OS/390 other Total
13.0 19.7 3.4 - - - 38.5

CICS TRADERBL CICS other VTAM & TCP/IP CTG Web server OS/390 other Total
13.0 14.4 3.8 - 40.2 4.4 75.8

features, such moving graphics and sound, and also continue to use the original CICS business logic.

They initially decide on using the CTG on OS/390 due to its high scalability, and decide to implement
an applet architecture. The applet will be initially designed for usage by a limited group of intranet
users. These users have known software levels, reasonably powerful workstations, and are within the
corporate firewall, so should work well with an architecture using CTG applets and the CTG TCP/IP
protocol.

From our measurements presented in Chapter 7 , "The OS/390 CTG" on page 103 we know the cost of a
single business transaction using a CTG applet and a CTG TCP/IP connection. These costs are shown in
Figure 23 .

Table 23: Single business transaction using CTG Java applets

l Transaction rates — 40 business transactions per second

l CPU usage — 2480 CPU ms of which 712 ms is within CICS, and still within the capacity of a
single CICS region.

l Target system — 50% CEC of 9672-R55

9.6 Web Access Using CICS Transaction Gateway and servlets
The Trader Company decide that the time has come to open their Trader application to wider set of users
on the Internet. Initially this will be a pilot to a selected number of brokers via the connection of their
intranet to the Trader Company's network — an extranet. They anticipate a further increase in workload
due to this expansion.

The Trader Company decides to invest its application development in Java servlets. It plans to
implement some new business logic for its Internet users within the servlet and to use the Java Server
Pages (JSPs) instead of applets for the presentation logic. It can re-use its CTG Java applet code with the
new servlet architecture. Usage of Java servlets is also seen as a strategic decision, since the Company is
interested in Enterprise Java Bean (EJB) support, and this will position them well to be able to utilize
this technology.

From our measurements presented in Chapter 7 , "The OS/390 CTG" on page 103 we know the cost of a
single business transaction using a servlet to access a CICS application. These costs are shown in Figure
24

Table 24: Single business transaction using CTG Java servlets

CICS TRADERBL CICS other VTAM & TCP/IP CTG Web server OS/390 other Total
13.0 4.8 1.9 31.7 - 10.6 62.0

CICS TRADERBL CICS other VTAM & TCP/IP CTG Web server OS/390 other Total
13.0 5.7 1.8 - 96.6 18.9 136.0

l Transaction rates — 50 business transactions per second

l CPU usage — 6800 CPU ms — which clearly exceeds the capacity of the current 9672 R55
S/390 system, since it has 5 CPUs (or 5,000 CPU ms per second). One solution is to upgrade the
processors — for example to the next generation of 9672. A 9672-R56 would give approximately
220% the capacity of a 9672-R55 based on the LSPR ratio for CICS.

l Target system — 136% CEC of a 9672-R55 or 62% of a 9672-R56.

With a machine upgrade and software conversion to servlets, the Trader Company is well placed to
exploit Enterprise Java, and to open up its business to users on the Internet.

9.7 The final configuration
The Trader Company now runs five times as many business transactions as it did when using employees
working at 3270 screens. They are now developing Java programs to access CICS business logic and
have customers directly connected through the Internet.

A final configuration could look something like Figure 61 . We have upgraded to a more powerful
processor and this is shown as a single system, but the various components of this system could be
spread across members of a sysplex to achieve system availability.

Figure 61: The final Trader configuration

TCP/IP port sharing and VTAM generic resource are used to balance work across multiple CICS
regions, or across multiple WebSphere Application Servers or CTG Java gateway applications. Web
clients and 3270 terminals are controlled by CICS Web Owning Regions (WORs) or Terminal Owning
Regions (TORs). Multiple CICS Application Owning Regions (AORs) are used to spread the work of
the CICS business logic. This requires that the data is able to be shared between them, thus VSAM
Record Level Sharing (RLS) is used to allow multiple accesses to the same VSAM file.

Appendix A: Test environments

Overview
This section details the hardware and software configuration used in the laboratory performance tests.

A.1 Hardware environment
The same OS/390 hardware was used for all the measurement tests presented in this book. This
configuration was a four member OS/390 Parallel Sysplex, but only two members of this sysplex were
used for the measurement; one to provide a platform for the system under test, and a second to provide a
platform for the network simulation driver (when using TPNS). Each sysplex member ran on a single
9672 Central Electronic Complex (CEC). This configuration comprised:

l A 9672-R55 processor (2GB storage) with 2 Cryptographic Coprocessors available where noted.

l A 9674-C05 coupling facility (2GB storage)

l Adequate RAMAC DASD to eliminate I/O constraints

For tests needing Web client simulations, either TPNS on OS/390 or the Compuware QALoad product
on two nodes of an SP2 AIX processor was used.

The network connecting the OS/390 and AIX systems comprised:

l An ATM LAN emulation client (Token Ring) adaptor card on each of the AIX SP2 nodes

l An ATM (Asynchronous Transfer Mode) network

l An OSA-2 card on the S/390 processor set to operate in TCP/IP Passthru Mode to provide token-
ring LAN emulation client (LEC) services via the ATM connection.

A.2 Software environments
The software levels used in all our tests were as follows; any variations or additional PTFs required are
later noted in each section.

l OS/390 V2.7, including:
¡ VTAM V4.7

¡ DFSMS V1.5 (VSAM)

l CICS Transaction Server for OS/390 V1.3

l TPNS V3.5

l WebSphere Application Server V1.1, including:
¡ IBM HTTP Server V5.1

l OS/390 Java Development Kit V1.1.8

l OS/390 CICS Transaction Gateway V3.1

l Compuware QALoad/QARun software at V4.3

l AIX V4.2.1.0

The following sections detail the pertinent configuration parameters in effect during the laboratory
performance tests. These parameters are not necessarily recommended for all environments, but were in
effect during our testing. You should validate these settings in your environment.

A.2.1 The 3270 Trader tests

The following CICS System Initialization Table (SIT) parameters shown in Table 25 were used during
our tests.

Table 25: CICS SIT parameters

The LPA was used only for the following CICS modules which need to be located in the LPA: DFHIRP,
DFHDSPEX, DFHCSVC.

A.2.2 CICS Web support with the 3270 Web bridge

Parameter Meaning Value
AUXTR Auxiliary trace flag OFF
CMDPROT EXEC storage checking NO
EDSALIM EDSA limit 260M
HPO VTAM High Performance Option YES
ICVR Runaway task checking 0
INTTR Internal tracing ON
MN CICS Monitoring YES
MNCONV Monitoring converse record option OFF
MNEVE Monitoring event class option ON
MNPER Monitoring performance class option OFF
RLS VSAM RLS support NO
MROBATCH Number of MRO requests to batch 1
SEC Security NO
STGPROT Storage protection facility NO
SPCTR Special tracing OFF
SUBTASKS Number of concurrent mode TCBs 0
SYSTR Master system trace flag OFF
TRANSIO Transaction isolation NO
USERTR User trace flag ON

The same CICS SIT parameters as used for the 3270 Trader tests in Table 25 on page 163 , were used
for the 3270 Web bridge tests. The SIT parameters modified for the 3270 Web bridge tests are
documented in Table 26 .

Table 26: CICS SIT parameters for CICS Web support

The CICS TCPIPSERVICE definition used to configure the HTTP support for our test CICS region is
shown in Table 27 .

Table 27: TCPIPSERVICE definition

The eNetwork Communications Server configuration parameters used to configure TCP/IP support are
listed in Table 28 .

Table 28: TCP/IP parameters

The packet size for the AIX adapter card was allowed to default to 1,500 bytes, as using larger values
caused network instability.

A.2.3 CICS Web support with Web-aware presentation logic

CWS direct connection

The same CICS SIT and TCPIPSERVICE parameters as documented in Appendix A.2.2 , "CICS Web
support with the 3270 Web bridge" on page 164 , were used for the CWS tests with Web-aware
presentation logic.

The only difference was that the TCPIPSERVICE SOCKETCLOSE value was set to 20 seconds as

Parameter Meaning Value
TCPIP TCP/IP support for HTTP and IIOP YES
WEBDELAY CWS time-out and garbage collection 1,1

Parameter Meaning Value
BACKLOG TCP/IP queue length 128
SOCKETCLOSE HTTP persistent connection time-out 000010
SSL SSL security NO
TSQPREFIX TSQ template prefix for Web I/O default

Parameter Meaning Value
MTU (on GATEWAY statement) Maximum transmission unit size 4500
SOMAXCONN Socket request queue length 1024
ARPAGE Time-out of arp cache 20
TCPSENDBFRSIZE (on TCPCONFIG statement) Size of TCP/IP send buffer 65536
TCPRCVBUFRSIZE (on TCPCONFIG statement) Size of TCP/IP receive buffer 65536

opposed to 10. This enabled persistent HTTP connections to be used with the longer think time imposed
by the larger number of clients. The value of SOCKETCLOSE was set to 0 when persistent HTTP
connections were not used.

CICS WebServer Plugin

When using CWS and the CICS WebServer Plugin, the following parameters were used in the OS/390
Web server configuration file httpd.conf

DNS-Lookup off
MaxActiveThreads 150
MaxPersistRequest 9999
ServerPriority -20
Service /iycuzc14/* /etc/dfhwbapi.so:DFHService
Service /IYCUZC14/* /etc/dfhwbapi.so:DFHService
PersistTimeout 1 minute
CacheLocalMaxBytes 6 M

A.2.4 CWS with SSL

The fix for the following CICS APAR was applied to the system:

l PQ23421 - Enabling APAR for CTS 1.3 SSL

The fixes for the following System SSL APARs were applied to the system:

l OW37136 - GA APAR for SSL base and strong crypto

l PQ31399 - Provide full support for SSL session ID's

l OW40099 - System SSL - externalization of gsk_user_set()

l OW40974 - System SSL session ID comparison failure

l OW38773 - System SSL utility program gskkyman generates csr files which do not contain
state/province information

The microcode fix RPQ8P1987, feature code 834, was applied to the S3/90 system to enable the
Cyrptographic Coprocessor Facility to assist in SSL handshaking.

The same CICS SIT and TCPIPSERVICE parameters as documented in Appendix A.2.3 , "CICS Web
support with Web-aware presentation logic" on page 165 , were used for the CWS SSL tests. The only
difference was that the TCIPIPSERVICE parameters SOCKETCLOSE was set to 10 and the following
SIT parameters in Table 29 were used.

Table 29: CICS SIT parameters for CICS Web support with SSL
Parameter Meaning Value
DSALIM Limit of dynamic storage areas 4M
SSLTCBS Number of TCBs for SSL processing 70

In addition, the new SIT parameters SSLDELAY and ENCRYPTION and the TCPIPSERVICE
parameter SOCKETCLOSE were modified during each of the tests to produce the desired SSL test
scenario. A summary of the meaning of these new SSL SIT parameters is given in Table 30 .

Table 30: SSL configuration parameters
Parameter Value Meaning
ENCRYPTION WEAK |

NORMAL |
STRONG

This parameter controls the cipher spec for the SSL record protocol
negotiated during the SSL handshake.

WEAK specifies the following list of ciphers:

l RC4 encryption with a 40-bit key and an MD5 MAC

l RC2 encryption with a 40-bit key and an MD5 MAC

l No encryption with an MD5 MAC

l No encryption with an SHA MAC.

NORMAL specifies the following list of ciphers:

l DES encryption with a 56-bit key and an SHA MAC

l RC4 encryption with a 40-bit key and an MD5 MAC

l RC2 encryption with a 40-bit key and an MD5 MAC

l No encryption with an MD5 MAC

l No encryption with an SHA MAC.

STRONG Specifies the following list of ciphers:

l Triple DES encryption with a 168-bit key and an SHA MAC

l RC4 encryption with a 128-bit key and an MD5 MAC

l RC4 encryption with a 128-bit key and an SHA MAC

l DES encryption with a 56-bit key and an SHA MAC

l RC4 encryption with a 40-bit key and an MD5 MAC

l RC2 encryption with a 40-bit key and an MD5 MAC

l No encryption with an MD5 MAC

A.2.5 CICS Transaction Gateway

The same CICS SIT parameters as documented in Appendix A.2.1 , "The 3270 Trader tests" on page
163 , were used for the CICS Transaction Gateway tests.

When using the CTG applet architecture the following parameters were used in the ctg.ini configuration
file for the CTG Java Gateway application.

maxconnect=1000
maxworker=75
protocol@tcp.handler=com.ibm.ctg.server.TCPHandler
protocol@tcp.parameters=port=2006; sotimeout=9000; connecttimeout=2000;
 idletimeout=600000; pingfrequency=600000
protocol@http.handler=com.ibm.ctg.server.HttpHandler
protocol@http.parameters=port=8080; sotimeout=9000; connecttimeout=2000;
 idletimeout=120000; pingfrequency=600000

The CTG values for initworker and initconnect are not given because our performance tests were run
after the workload had stabilized; thus only the maximum thread values, not the initial values, are of
interest.

When using the CTG servlet architecture, the following parameters were used in the OS/390 Web server
configuration file httpd.conf :

 MaxActiveThreads 140
 MaxPersistRequest 9999
 ServerPriority -20
 PersistTimeout 1 minute
 CacheLocalMaxBytes 6 M

Appendix B: Performance data

l No encryption with an SHA MAC.
SSLDELAY {600|number} This delay specifies the length of time in seconds for which CICS

retains session IDs for SSL connections. Session IDs are tokens that
represent a secure connection between a client and an SSL server.
While the session ID is retained by CICS within the SSLDELAY
period, CICS can continue to communicate with the client without
the significant overhead of an SSL handshake. The value is a number
of seconds in the range 0 through 86400.

SSLTCBS {8|number} This parameter specifies the number of CICS subtask TCBs that will
be dedicated to processing secure sockets layer connections. The
value is a number in the range 0 to 255. It controls the number of
simultaneous SSL connections that CICS can establish. A value of 0
means that no SSL connections are to be established. This number is
independent of and in addition to the TCBs specified in
MAXOPENTCBS. The TCBs used by SSL can consume
considerable storage below 16MB.

Overview
This appendix contains all the unprocessed performance data from our laboratory workloads. This data
was collected from RMF reports. Each test was run in isolation with no other work active within the
OS/390 image. All Web client simulation software was executed on a separate system.

The CPU usage apportioned to each address space is reported together with the total CPU usage in the
system. The RMF correction factor has already been applied to all the data; this factor is used to
apportion to each address space that amount of CPU which is not quantifiable. The CPU usage in the
tables is presented as percentage usage of a single R55 CPU . Thus the maximum possible total CPU
usage is 500 CPU% (or 5 CPU seconds per second) on our 9672-R55 test system, which contains five
CPUs. Note that the response times are not reported in our data, since all the recorded times were less
than one second. This is due to the simple nature of our test programs and the high network capacity of
our test network.

The definitions of the terms used in the tables are as follows:

B.1 3270 Trader application
Table 31 details CPU usage when running a 3270 Trader workload using TPNS. The results were
recorded using RMF monitoring. Throughput is defined as Trader business transactions per second; one
business transaction consists of 10 CICS tasks. For a discussion of this data refer to 3.2 , "Measured
CPU usage" on page 45 .

Table 31: 3270 Trader CPU usage

CICS CPU is the recorded CPU usage charged to the CICS address space, expressed as a
percentage of one processor.

TCP/IP CPU is the recorded CPU usage charged to the TCP/IP address space, expressed as a
percentage of one processor.

VTAM CPU is the recorded CPU usage charged to the VTAM address space, expressed as a
percentage of one processor.

Web server CPU is the recorded CPU usage charged to the OS/390 Web server address space,
expressed as a percentage of one processor.

CTG CPU is the recorded CPU usage charged to the CTG Java gateway application address
space, expressed as a percentage of one processor.

Total CPU is the total CPU usage within the OS/390 system, expressed as a percentage of one
processor.

Throughput is defined for each section.
Total CPU
ms/request

is the total OS/390 CPU cost per request. It is calculated by multiplying the total
CPU% by 10 to convert to CPU ms, then dividing by the throughput.

Throughput CICS CPU% VTAM CPU% Total CPU% Total CPU ms/request
9.0 30.8 0.9 41.6 46.2
10.6 37.1 1.1 48.2 45.5
12.1 41.1 1.3 52.0 43.0
15.1 50.2 1.5 61.2 40.5

B.2 CWS with the 3270 Web bridge
The data in Table 32 and Table 33 shows the results for the tests using the 3270 Web bridge. A CWS
direct connection was utilized for these tests. Throughput is defined as Web requests per second; 200
simulated Web browser clients were in use for all tests. For a discussion of this data refer to Chapter 4 ,
"CWS with the 3270 Web bridge" on page 51 .

Table 32: 3270 Web bridge, continuous pseudo-conversation

Table 33: 3270 Web bridge, non-continuous pseudo-conversation

B.3 CWS with Web-aware presentation logic
In this section we present the results of our tests using CICS Web support and new HTTP based Web-
aware presentation logic, first using a direct connection to CWS and then using the CICS WebServer
Plugin. For discussion of this data refer to Chapter 5 , "CWS with Web-aware presentation logic" on
page 65 .

B.3.1 CWS and a direct connection

Table 34 details the actual HTTP data stream sizes sent and received by CICS Web support in our test
measurements using a direct connection. These data sizes include the HTTP header information. Send
data tests were implemented using the HTTP GET method, and receive data tests were implemented
using the HTTP POST method.

Table 34: CWS direct connection, data transmission sizes

Throughput CICS CPU% TCPIP & VTAM CPU% Total CPU% Total CPU ms/request
15.72 14.11 3.08 20.7 13.1
20.88 18.02 3.95 25.3 12.1
30.96 25.36 5.31 33.9 10.9
59.9 46.26 9.14 58.3 9.7
111.8 82.73 15.40 101.2 9.0

Throughput CICS CPU% TCPIP & VTAM CPU% Total CPU% Total CPU ms/request
15.78 15.52 2.90 22.0 13.9
21.02 20.46 3.75 27.7 13.2
30.00 29.66 4.64 38.0 12.7
58.94 58.98 8.43 72.4 12.3
97.42 110.86 12.30 127.6 13.1

Nominal
data size

Send or
receive

Application
style

Persistent HTTP
connections

Data received by
CICS (bytes)

Data sent from
CICS (bytes)

100 bytes send WEB API persistent 284 194

The following data, presented in Table 35 on page 174 through Table 58 on page 180 , shows the results
for a CWS direct connection with Web-aware presentation logic using the CICS WEB API. Throughput
is defined as Web requests per second. 200 simulated Web browser clients were in use for all tests.

Table 35: CWS direct connection, persistent HTTP connection, 100 byte send

Table 36: CWS direct connection, persistent HTTP connection, 5KB send

5KB send WEB API persistent 284 5094
15KB send WEB API persistent 284 15094
32KB send WEB API persistent 284 32094
33KB send WEB API persistent 284 33094
50KB send WEB API persistent 284 50094

100 bytes receive WEB API persistent 421 116
5KB receive WEB API persistent 5321 116
15KB receive WEB API persistent 15321 116
32KB receive WEB API persistent 32321 116
33KB receive WEB API persistent 33321 116
50KB receive WEB API persistent 50321 116

100 bytes send WEB API non-persistent 279 170
5KB send WEB API non-persistent 279 5070
15KB send WEB API non-persistent 279 15070
32KB send WEB API non-persistent 279 32070
33KB send WEB API non-persistent 279 33070
50KB send WEB API non-persistent 279 50070

100 bytes receive WEB API non-persistent 421 116
5KB receive WEB API non-persistent 5321 116
15KB receive WEB API non-persistent 15321 116
32KB receive WEB API non-persistent 32321 116
33KB receive WEB API non-persistent 33321 116
50KB receive WEB API non-persistent 50321 116
5KB send COMMAREA persistent 284 5050
5KB receive COMMAREA persistent 5323 153

Throughput CICS CPU% VTAM CPU% TCP/IP CPU% Total CPU% CPU ms/request
19.65 7.30 0.57 1.25 13.6 6.9
39.46 13.36 0.65 1.69 19.2 4.9
65.39 20.25 0.85 2.30 26.8 4.1
97.55 29.38 1.16 2.90 36.7 3.8
189.40 53.02 1.44 4.54 62.1 3.3

Table 37: CWS direct connection, persistent HTTP connection, 15KB send

Table 38: CWS direct connection, persistent HTTP connection, 32KB send

Table 39: CWS direct connection, persistent HTTP connection, 33KB send

Table 40: CWS direct connection, persistent HTTP connection, 50KB send

Table 41: CWS direct connection, persistent HTTP connection, 100 byte receive

Throughput CICS CPU% VTAM CPU% TCP/IP CPU% Total CPU% CPU ms/request
19.63 8.11 0.57 1.42 134.0 7.1
39.57 14.40 0.76 2.17 20.9 5.3
65.45 22.29 1.08 2.88 29.6 4.5
97.49 31.55 1.27 3.90 40.0 4.1
189.30 57.98 1.76 5.71 68.9 3.6

Throughput CICS CPU% VTAM CPU% TCP/IP CPU% Total CPU% CPU ms/request
19.67 15.35 0.69 2.66 15.4 7.8
39.45 23.60 0.87 2.73 23.6 6.0
65.33 33.95 1.29 3.76 34.0 5.2
97.58 46.65 1.70 4.98 46.7 4.8
189.90 81.15 2.61 7.60 81.2 4.3

Throughput CICS CPU% VTAM CPU% TCP/IP CPU% Total CPU% CPU ms/request
19.60 10.95 0.92 2.38 18.0 9.2
39.49 20.05 1.44 3.84 28.7 7.3
65.15 31.25 2.06 5.27 41.9 6.4
97.40 45.48 2.55 6.54 57.9 5.9
178.80 77.24 9.50 15.26 105.3 5.9

Throughput CICS CPU% VTAM CPU% TCP/IP CPU% Total CPU% CPU ms/request
19.53 11.16 0.93 2.39 17.8 9.1
39.51 20.47 1.44 3.83 29.5 7.5
65.00 31.97 1.94 5.25 42.3 6.5
97.08 46.15 2.55 6.86 58.6 6.0
173.90 77.66 9.60 15.79 104.9 6.0

Throughput CICS CPU% VTAM CPU% TCP/IP CPU% Total CPU% CPU ms/request
19.61 13.02 1.15 2.68 20.3 10.4
39.38 23.90 1.76 4.45 33.5 8.5
65.09 37.69 2.68 7.05 50.6 7.8
97.22 52.07 4.03 12.64 71.9 7.4
116.10 62.85 10.40 14.37 90.9 7.8

Table 42: CWS direct connection, persistent HTTP connection, 5KB receive

Table 43: CWS direct connection, persistent HTTP connection, 15KB receive

Table 44: CWS direct connection, persistent HTTP connection, 32KB receive

Table 45: CWS direct connection, persistent HTTP connection, 33KB receive

Table 46: CWS direct connection, persistent HTTP connection, 50KB receive

Throughput CICS CPU% VTAM CPU% TCP/IP CPU% Total CPU% CPU ms/request
19.66 7.93 0.57 1.13 14.5 7.3
39.42 14.40 0.76 1.78 21.2 5.4
65.31 22.37 0.96 2.28 29.1 4.5
97.47 32.20 1.27 2.88 39.8 4.1
189.50 59.99 1.65 4.39 69.6 3.7

Throughput CICS CPU% VTAM CPU% TCP/IP CPU% Total CPU% CPU ms/request
19.62 11.15 0.93 2.39 18.1 9.2
39.84 20.11 1.20 3.49 28.3 7.1
65.39 31.45 1.49 4.94 41.1 6.3
97.27 45.05 1.89 6.56 57.0 5.9
189.90 83.05 2.15 9.57 98.0 5.2

Throughput CICS CPU% VTAM CPU% TCP/IP CPU% Total CPU% CPU ms/request
19.65 15.71 1.11 3.59 24.0 12.2
40.07 29.64 1.72 5.97 40.6 10.1
65.39 46.21 2.21 8.62 60.3 9.2
97.04 65.76 2.71 11.48 83.2 8.6
189.00 115.04 2.65 15.98 137.0 7.2

Throughput CICS CPU% VTAM CPU% TCP/IP CPU% Total CPU% CPU ms/request
19.64 22.98 1.52 5.39 33.3 17.0
39.72 44.05 2.54 9.50 59.4 15.0
65.46 70.10 2.90 13.87 90.2 13.8
97.01 98.32 3.07 17.99 122.6 12.6
135.80 128.55 3.91 22.16 158.0 11.6

Throughput CICS CPU% VTAM CPU% TCP/IP CPU% Total CPU% CPU ms/request
19.73 23.94 1.52 5.61 34.5 17.5
39.95 46.36 2.76 9.94 62.2 15.6
65.22 72.96 3.33 14.59 94.1 14.4
96.82 102.47 2.54 18.27 126.6 13.1

130/10 131.05 4.44 22.39 161.3 12.4

Table 47: CWS direct connection, non-persistent HTTP connection, 100 byte send

Table 48: CWS direct connection, non-persistent HTTP connection, 5KB send

Table 49: CWS direct connection, non-persistent HTTP connection, 15KB send

Table 50: CWS direct connection, non-persistent HTTP connection, 32KB send

Table 51: CWS direct connection, non-persistent HTTP connection, 33KB send

Throughput CICS CPU% VTAM CPU% TCP/IP CPU% Total CPU% CPU ms/request
19.73 26.98 1.84 7.03 39.2 19.9
39.76 52.22 3.28 12.56 71.5 18.0
65.31 82.86 4.48 19.01 109.6 16.8
94.65 115.31 2.63 23.90 145.0 15.3

Throughput CICS CPU% VTAM CPU% TCP/IP CPU% Total CPU% CPU ms/request
19.6 17.80 0.81 2.56 17.8 9.1
39.34 18.98 1.34 4.83 28.4 7.2
65.34 29.74 2.08 6.37 41.6 6.4
97.53 42.18 2.25 8.55 56.4 5.8
189.50 76.66 2.83 13.05 95.8 5.1

Throughput CICS CPU% VTAM CPU% TCP/IP CPU% Total CPU% CPU ms/request
19.52 10.81 0.93 3.20 18.6 9.5
39.54 19.66 1.45 5.43 30.2 7.6
65.19 30.71 2.30 8.05 44.4 6.8
97.62 43.66 2.24 10.19 59.6 6.1
189.60 80.50 3.14 15.80 102.9 5.4

Throughput CICS CPU% VTAM CPU% TCP/IP CPU% Total CPU% CPU ms/request
19.34 11.47 1.17 4.43 20.9 10.8
39.47 21.25 2.14 7.72 34.6 8.8
64.88 33.12 3.06 11.12 50.7 7.8
97.75 48.05 2.89 13.98 68.3 7.0
189.90 88.50 4.10 20.80 116.9 6.2

Throughput CICS CPU% VTAM CPU% TCP/IP CPU% Total CPU% CPU ms/request
19.30 12.82 1.51 6.03 24.0 12.4
39.44 24.05 2.79 10.34 40.6 10.3
64.86 37.96 3.92 14.78 59.9 9.2
97.19 54.31 3.06 17.59 79.0 8.1
164.80 85.91 8.32 22.94 120.8 7.3

Throughput CICS CPU% VTAM CPU% TCP/IP CPU% Total CPU% CPU ms/request

Table 52: CWS direct connection, non-persistent HTTP connection, 50KB send

Table 53: CWS direct connection, non-persistent HTTP connection, 100 byte receive

Table 54: CWS direct connection, non-persistent HTTP connection, 5KB receive

Table 55: CWS direct connection, non-persistent HTTP connection, 15KB receive

Table 56: CWS direct connection, non-persistent HTTP connection, 32KB receive

19.32 13.01 1.50 6.01 24.2 12.5
39.57 24.64 2.79 10.58 41.5 10.5
64.98 38.55 3.69 14.86 60.5 9.3
97.41 55.57 3.28 18.16 80.4 8.3
162.20 86.80 7.55 21.59 119.3 7.4

Throughput CICS CPU% VTAM CPU% TCP/IP CPU% Total CPU% CPU ms/request
19.32 14.39 1.95 7.32 27.2 14.1
39.42 27.08 3.07 12.40 46.2 11.7
65.32 42.73 3.08 16.63 65.9 10.1
97.50 62.25 4.86 19.99 90.5 9.3

Throughput CICS CPU% VTAM CPU% TCP/IP CPU% Total CPU% CPU ms/request
19.64 11.06 0.80 2.53 18.3 9.3
39.32 20.14 1.33 4.34 30.2 7.6
65.15 31.33 2.07 6.45 43.2 6.6
97.47 44.80 2.46 8.62 59.3 6.1
189.50 82.36 3.90 13.85 103.4 5.5

Throughput CICS CPU% VTAM CPU% TCP/IP CPU% Total CPU% CPU ms/request
19.47 13.73 1.02 3.56 22.0 11.3
39.49 25.40 1.87 6.09 36.8 9.3
65.14 40.03 2.92 9.11 55.6 8.5
97.34 56.99 3.017 11.64 75.0 7.7
190.00 105.29 3.45 18.32 130.4 6.9

Throughput CICS CPU% VTAM CPU% TCP/IP CPU% Total CPU% CPU ms/request
19.32 18.52 1.33 5.08 28.5 14.7
39.46 35.08 2.49 8.60 49.5 12.5
64.91 55.42 3.73 12.40 74.9 11.5
97.55 80.24 3.46 16.20 103.4 10.6
189.90 147.30 3.18 24.52 178.4 9.4

Throughput CICS CPU% VTAM CPU% TCP/IP CPU% Total CPU% CPU ms/request
19.49 26.37 1.73 6.59 38.1 19.5

Table 57: CWS direct connection, non-persistent HTTP connection, 33KB receive

Table 58: CWS direct connection, non-persistent HTTP connection, 50KB receive

The data in Table 59 and Table 60 is from tests that used the COMMAREA manipulation technique
instead of the WEB API in the Web-aware presentation logic. Both tests used a persistent HTTP
connection, and 200 simulated Web browser clients.

Table 59: CWS direct connection, COMMAREA manipulation, 5KB send

Table 60: CWS direct connection, COMMAREA manipulation, 5KB receive

39.53 50.39 3.07 11.09 67.9 17.2
54.40 79.79 2.68 15.76 101.5 15.5
97.51 117.03 2.45 21.17 144.0 14.8
126.10 150.22 2.31 25.33 181.7 14.4

Throughput CICS CPU% VTAM CPU% TCP/IP CPU% Total CPU% CPU ms/request
19.56 27.37 1.73 6.70 39.2 20.0
39.46 52.32 2.96 11.19 69.7 17.7
65.44 83.05 2.46 15.86 104.9 16.0
97.14 123.23 2.98 22.17 151.9 15.6
119.00 152.91 5.59 26.77 119.0 15.9

Throughput CICS CPU% VTAM CPU% TCP/IP CPU% Total CPU% CPU ms/request
19.78 29.90 2.05 7.99 43.3 21.9
39.54 57.35 3.38 13.85 77.9 19.7
65.17 90.54 2.13 19.52 115.5 17.7
95.55 136.39 2.45 27.00 169.4 17.7

Throughput CICS CPU% VTAM CPU% TCP/IP CPU% Total CPU% CPU ms/request
19.66 9.60 0.94 1.89 17.0 8.7
39.36 16.37 1.24 2.75 24.9 6.3
65.18 25.01 1.67 3.98 34.5 5.3
97.70 35.17 2.19 5.11 46.3 4.7
189.30 62.73 3.43 7.88 77.7 4.1

Throughput CICS CPU% VTAM CPU% TCP/IP CPU% Total CPU% CPU ms/request
19.88 11.48 1.25 3.01 20.0 10.0
39.94 19.97 1.66 4.61 30.0 7.5
65.49 30.25 1.56 6.00 41.7 6.4
97.44 43.22 2.55 8.11 57.4 5.9
190.90 80.10 3.89 12.00 99.7 5.2

B.3.2 CWS and the CICS WebServer Plugin

Table 61 details the actual HTTP data stream sizes sent and received by CICS Web support in our test
measurements with the CICS WebServer Plugin. Send data tests were implemented using the HTTP
GET method, and receive data tests implemented using the HTTP POST method.

Table 61: CWS and WebServer Plugin, data transmission sizes

The following data, presented in Table 62 on page 182 through Table 73 on page 185 , shows the results
for the CWS tests using the CICS WebServer Plugin, with Web-aware presentation logic using the CICS
WEB API. Throughput is defined as Web requests per second. For all tests 70 simulated Web browser
clients were in use.

Table 62: WebServer Plugin, persistent HTTP connection, 100 bytes send

Table 63: WebServer Plugin, persistent HTTP connection, 5KB send

Nominal
data size

Send/receive Application
style

Persistent HTTP
connections

Data received by
CICS (bytes)

Data sent
CICS (bytes)

100 bytes send WEB API persistent 293 194
5KB send WEB API persistent 293 5094
15KB send WEB API persistent 293 15094
32KB send WEB API persistent 293 32094

100 bytes receive WEB API persistent 430 116
5KB receive WEB API persistent 5330 116
15KB receive WEB API persistent 15330 116
32KB receive WEB API persistent 32330 116

100 bytes send WEB API non-persistent 288 194
5KB send WEB API non-persistent 288 5094
15KB send WEB API non-persistent 288 15094
32KB send WEB API non-persistent 288 32094

Throughput CICS
CPU%

Web Server
CPU%

VTAM
CPU%

TCP/IP
CPU%

Total
CPU%

CPU
ms/request

13.63 3.33 10.80 0.13 0.80 19.6 14.4
16.92 4.04 12.63 0.13 0.91 22.0 13.0
19.49 4.57 14.34 0.25 1.02 24.5 12.6
32.51 7.15 22.52 0.36 1.43 35.5 10.9
60.47 12.38 37.02 0.68 2.16 56.1 9.3

Throughput CICS
CPU%

Web Server
CPU%

VTAM
CPU%

TCP/IP
CPU%

Total
CPU%

CPU
ms/request

13.20 3.58 10.47 0.27 0.93 19.8 15.0

Table 64: WebServer Plugin, persistent HTTP connection, 15KB send

Table 65: WebServer Plugin, persistent HTTP connection, 32KB send

Table 66: WebServer Plugin, persistent HTTP connection, 100 byte receive

Table 67: WebServer Plugin, persistent HTTP connection, 5KB receive

16.44 4.27 12.31 0.26 1.04 22.3 13.5
21.19 5.39 15.29 0.38 1.35 26.5 12.5
30.95 7.44 20.99 0.48 1.56 34.6 11.2
56.49 12.85 35.82 0.91 2.50 60.0 9.9

Throughput CICS
CPU%

Web Server
CPU%

VTAM
CPU%

TCP/IP
CPU%

Total
CPU%

CPU
ms/request

13.60 4.34 13.41 0.38 1.15 23.5 17.3
16.81 5.08 15.74 0.50 1.24 26.7 15.9
22.16 6.49 20.44 0.72 1.56 33.3 15.0
32.27 9.02 27.87 0.93 1.97 44.0 13.6
60.07 16.09 47.70 1.77 3.11 72.6 12.1

Throughput CICS
CPU%

Web Server
CPU%

VTAM
CPU%

TCP/IP
CPU%

Total
CPU%

CPU
ms/request

13.58 5.45 16.34 0.62 1.49 28.1 2.1
16.78 6.51 19.42 0.72 1.69 32.5 1.9
22.05 8.44 24.98 1.17 2.23 40.7 1.8
32.09 11.7 34.65 1.48 2.84 54.7 1.7
59.52 21.07 60.14 2.74 4.61 92.4 1.6

Throughput CICS
CPU%

Web Server
CPU

VTAM
CPU%

TCP/IP
CPU%

Total
CPU%

CPU
ms/request

17.21 4.68 12.90 0.51 1.01 23.7 13.7
22.98 5.97 16.58 0.61 1.22 28.7 12.5
34.18 8.43 23.31 0.70 1.52 38.3 11.2
66.63 15.43 40.47 1.12 2.35 63.5 9.5
241.90 58.43 153.52 1.50 5.99 224.1 9.3

Throughput CICS
CPU%

Web Server
CPU%

VTAM
CPU%

TCP/IP
CPU%

Total
CPU%

CPU
ms/request

17.28 4.89 12.28 0.75 1.88 24.3 14.1
23.14 6.17 16.10 0.73 2.18 29.7 12.8
34.18 8.83 22.77 0.93 2.79 39.5 11.6
66.52 16.61 41.31 1.33 4.43 68.0 10.2
224.20 59.15 179.38 1.69 15.69 260.6 11.6

Table 68: WebServer Plugin, persistent HTTP connection, 15KB receive

Table 69: WebServer Plugin, persistent HTTP connection, 32KB receive

Table 70: WebServer Plugin, non-persistent HTTP connection, 100 byte send

Table 71: WebServer Plugin, non-persistent HTTP connection, 5KB send

Table 72: WebServer Plugin, non-persistent HTTP connection, 15KB send

Throughput CICS
CPU%

Web Server
CPU%

VTAM
CPU%

TCP/IP
CPU%

Total
CPU%

CPU
ms/request

17.28 5.52 17.64 0.84 3.12 31.2 18.1
23.12 7.07 22.95 0.93 3.94 39.3 17.0
34.14 10.23 32.83 1.12 5.85 54.2 15.9
66.67 19.35 58.61 1.62 12.87 96.5 14.5
175.20 56.06 193.24 3.46 94.08 351.6 20.1

Throughput CICS
CPU%

Web Server
CPU%

VTAM
CPU%

TCP/IP
CPU%

Total
CPU%

CPU
ms/request

17.15 7.13 25.87 1.03 5.86 44.2 25.7
22.98 9.33 34.41 1.35 8.43 58.7 25.5
33.49 13.27 48.79 1.64 13.93 81.8 24.2
66.60 26.45 94.40 2.35 44.47 172.1 25.8
100.30 42.91 153.77 2.75 129.04 333.0 33.2

Throughput CICS
CPU%

Web Server
CPU%

VTAM
CPU%

TCP/IP
CPU%

Total
CPU%

CPU
ms/request

13.57 3.27 12.29 0.78 1.83 22.8 16.8
16.88 3.96 14.42 0.89 2.04 25.7 15.2
22.13 5.04 18.44 0.98 2.71 31.6 14.3
32.44 7.07 25.35 1.41 3.54 41.5 12.8
60.06 12.39 43.47 2.25 5.86 67.9 11.3

Throughput CICS
CPU%

Web Server
CPU%

VTAM
CPU%

TCP/IP
CPU%

Total
CPU%

CPU
ms/request

13.51 3.60 13.11 0.51 1.80 23.4 17.3
16.72 4.37 15.36 0.50 2.00 26.6 15.9
22.12 5.55 20.03 0.72 2.65 33.3 15.1
32.18 7.79 27.45 1.16 3.61 43.9 13.6
59.86 13.86 47.17 1.90 5.70 72.6 1.21

Throughput CICS
CPU%

Web Server
CPU%

VTAM
CPU%

TCP/IP
CPU%

Total
CPU%

CPU
ms/request

13.57 4.27 14.32 0.63 2.26 25.8 19.0
16.81 5.14 17.27 0.73 2.69 30.0 17.8

Table 73: WebServer Plugin, non-persistent HTTP connection, 32KB send

B.4 CWS with SSL
In this section we present the results of our tests using SSL with CICS Web support and new HTTP
based Web-aware presentation logic, using both a direct connection to CWS and the CICS WebServer
Plugin. For further discussion of this data refer to Chapter 6 , "SSL with CWS" on page 85 .

The measurements were generated using HTTP GET requests and a simple CICS WEB API program
that sent the requested amount of data. The SSL handshake measurements used non-persistent HTTP
connections and the CICS application returned 1 byte of data. The SSL data transmission measurements
used persistent HTTP connection and thus incurred no SSL handshake costs. 70 Web browser clients
were in use for all tests.

Table 74 and Table 75 detail the actual HTTP data stream sizes sent and received in the CWS SSL test
measurements.

Table 74: Data transmission sizes, CWS direct connection

Table 75: Data transmission sizes, WebServer Plugin

B.4.1 SSL handshakes with a CWS direction connection

22.07 6.54 21.66 0.95 3.33 36.7 16.6
32.23 9.18 29.94 1.38 4.59 49.1 15.2
59.37 16.23 51.78 2.54 7.40 81.7 13.8

Throughput CICS
CPU%

Web Server
CPU%

VTAM
CPU%

TCP/IP
CPU%

Total
CPU%

CPU
ms/request

13.51 5.36 16.92 1.10 2.92 30.8 22.8
16.80 6.55 19.77 1.19 3.33 35.3 21.0
21.99 8.37 25.82 1.51 4.42 44.6 20.3
32.07 11.73 35.87 2.03 6.09 59.9 18.7
58.57 20.79 61.50 2.74 9.52 98.7 16.9

Nominal data size Data received by CICS (bytes) Data sent from CICS (bytes)
1 bytes 284 95
8KB 284 8095
16KB 284 16095

Nominal data size Data received by CICS (bytes) Data sent from CICS (bytes)
1 byte 293 95
8KB 293 8095
16KB 293 16095

The following data, presented in Table 76 on page 187 through Table 99 on page 194 , shows the results
for the SSL handshake tests with a CWS direct connection. All the handshake tests used non-persistent
HTTP connections and sent 1 byte of data from the CICS application. The results in Table 79 and Table
80 on page 188 marked with crypto used the S/390 Cryptographic Coprocessor to assist in the CPU costs
of SSL handshaking. The Non-SSL figures are the cost of establishing a non-persistent HTTP
connection.

Table 76: Non-SSL, non-persistent HTTP connection, CWS direct connection

Table 77: SSL full handshake, 1024-bit key, CWS direct connection

Table 78: SSL full handshake, 512-bit key, CWS direct connection

Table 79: SSL full handshake with crypto, 1024-bit key, CWS direct connection

Table 80: SSL full handshake with crypto, 512-bit key, CWS direct connection

Throughput CICS CPU% VTAM CPU% TCP/IP CPU% Total CPU% CPU ms/request
13.57 6.79 0.67 1.73 16.9 12.5
16.93 8.41 0.79 2.10 18.7 11.0
22.23 10.54 0.89 2.54 21.9 9.9
32.47 14.79 1.22 3.54 27.3 8.4
60.73 25.77 2.09 5.80 40.4 6.7

Throughput CICS CPU% VTAM CPU% TCP/IP CPU% Total CPU% CPU ms/request
12.97 127.02 0.83 2.18 136.4 105.2
15.76 153.15 0.93 2.48 163.0 92.6
20.29 196.41 1.13 3.08 207.0 102
28.52 275.69 1.53 4.29 287.9 100.9
43.58 419.19 2.34 6.21 434.3 99.7

Throughput CICS CPU% VTAM CPU% TCP/IP CPU% Total CPU% CPU ms/request
13.20 38.96 0.89 2.21 48.7 36.9
16.27 47.6 0.98 2.51 57.8 35.5
21.38 61.33 1.29 3.33 72.5 33.9
30.87 87.35 1.80 4.44 100.2 32.5
50.55 147.15 2.72 6.80 163.0 32.2

Throughput CICS CPU% VTAM CPU% TCP/IP CPU% Total CPU% CPU ms/request
12.94 19.42 4.68 2.40 34.1 26.4
15.90 24.59 4.71 2.71 39.7 25.0
20.90 30.16 4.97 3.58 46.5 22.2
29.81 42.01 5.42 4.63 59.9 20.1
50.66 72.86 6.46 6.46 93.9 18.5

Throughput CICS CPU% VTAM CPU% TCP/IP CPU% Total CPU% CPU ms/request

Table 81: SSL null handshake, 1024-bit key, CWS direct connection

Table 82: SSL null handshake, 512-bit key, CWS direct connection

The following measurements marked client certs used SSL client certificates in addition to server
certificates.

Table 83: SSL full handshake, 1024-bit key, client certs, CWS direct connection

Table 84: SSL full handshake with crypto, 1024-bit key, client certs, CWS direct connection

13.01 19.49 4.66 2.27 34.0 26.1
16.12 23.68 4.59 2.59 38.4 23.8
21.2 30.59 4.85 3.46 46.4 21.9
30.45 42.60 5.40 4.72 60.3 19.8
51.87 75.21 6.45 6.56 96.2 18.5

Throughput CICS CPU% VTAM CPU% TCP/IP CPU% Total CPU% CPU ms/request
12.90 12.17 0.91 2.35 20.8 16.1
15.96 14.50 1.02 2.67 23.4 14.7
20.57 18.18 1.35 3.44 28.0 13.6
29.07 24.66 1.78 4.50 35.8 12.3
49.16 39.48 2.27 6.37 52.5 10.7

Throughput CICS CPU% VTAM CPU% TCP/IP CPU% Total CPU% CPU ms/request
12.91 12.09 0.91 2.47 20.8 16.1
15.82 14.51 1.02 2.67 23.3 14.7
20.48 18.08 1.35 3.44 27.8 13.6
29.07 24.70 1.78 4.51 35.8 12.3
49.32 39.69 2.27 6.37 53.0 10.7

Throughput CICS CPU% VTAM CPU% TCP/IP CPU% Total CPU% CPU ms/request
12.47 243.98 1.23 3.48 255.6 205.0
15.04 306.71 1.53 4.29 318.8 212.0
18.93 389.35 1.83 5.19 403.4 213.1
23.65 481.63 2.34 6.61 497.7 210.4
23.99 483.09 2.34 6.93 500.0 208.4

Throughput CICS CPU% VTAM CPU% TCP/IP CPU% Total CPU% CPU ms/request
13.08 19.77 4.37 2.40 34.8 26.6
16.26 23.81 4.34 2.83 39.6 24.4
21.21 30.58 4.26 3.59 47.2 22.2
30.51 42.95 4.49 4.73 61.6 20.1

B.4.2 SSL data transmission with a CWS direction connection

The following data, presented in Table 88 on page 191 through Table 99 on page 194 , shows the results
for the SSL data transmission tests with a CWS direct connection. All the data transmission tests used
persistent HTTP connections. The results shown in Table 97 on page 194 through Table 99 on page 194
marked with crypto used the S/390 Cryptographic Coprocessor; the non-SSL figures in Table 85
through Table 87 are given for comparison.

Table 85: Non-SSL 1 byte transmission, CWS direct connection

Table 86: Non-SSL 8KB transmission, CWS direct connection

Table 87: Non-SSL 16KB transmission, CWS direct connection

Table 88: SSL 1 byte transmission, RC4-MD5(40 bit), CWS direct connection

48.27 68.14 4.55 6.27 89.0 18.4

Throughput CICS CPU% VTAM CPU% TCP/IP CPU% Total CPU% CPU ms/request
13.57 4.62 0.28 0.70 14.6 10.8
16.89 5.66 0.28 0.83 15.6 9.2
22.24 7.22 0.40 1.07 17.3 7.8
32.65 10.06 0.52 1.29 20.0 6.1
61.00 17.37 0.73 1.82 27.45 4.5

Throughput CICS CPU% VTAM CPU% TCP/IP CPU% Total CPU% CPU ms/request
13.58 5.34 0.26 1.10 15.75 11.6
16.95 6.58 0.39 1.34 17.05 10.1
22.24 8.39 0.50 1.70 19.0 8.5
32.54 11.66 0.60 2.13 22.7 7.0
60.86 20.21 1.03 3.45 32.45 5.3

Throughput CICS CPU% VTAM CPU% TCP/IP CPU% Total CPU% CPU ms/request
13.62 6.07 0.38 1.48 16.6 12.2
16.86 7.39 0.37 1.58 18.0 10.7
22.25 9.63 0.60 2.18 20.6 9.3
32.48 13.23 0.82 2.84 24.9 7.7
60.50 23.28 1.22 4.45 36.5 6.0

Throughput CICS CPU% VTAM CPU% TCP/IP CPU% Total CPU% CPU ms/request
13.60 6.28 0.28 0.84 16.1 11.8
16.85 7.32 0.27 0.81 16.8 10.0
22.27 9.19 0.26 1.05 18.9 8.5
32.62 12.92 0.38 1.27 22.6 6.9

Table 89: SSL 8KB transmission, RC4-MD5(40 bit), CWS direct connection

Table 90: SSL 16KB transmission, RC4 -MD5(40 bit), CWS direct connection

Table 91: SSL1 byte transmission, RC4-MD5(128 bit), CWS direct connection

Table 92: SSL 8KB transmission, RC4-MD5(128 bit), CWS direct connection

Table 93: SSL 16KB transmission, RC4 -MD5(128 bit), CWS direct connection

60.93 22.35 0.71 1.90 32.5 5.3

Throughput CICS CPU% VTAM CPU% TCP/IP CPU% Total CPU% CPU ms/request
13.59 9.10 0.26 1.19 18.9 13.9
16.90 10.69 0.39 1.29 20.4 12.0
22.21 13.80 0.50 1.62 23.8 10.7
32.51 18.99 0.60 2.16 29.5 9.1
60.57 33.62 1.14 3.42 45.3 7.5

Throughput CICS CPU% VTAM CPU% TCP/IP CPU% Total CPU% CPU ms/request
13.59 11.75 0.38 1.40 21.5 15.8
16.84 14.08 0.50 1.62 23.8 14.1
22.17 18.15 0.60 2.04 28.3 12.8
32.20 24.92 0.82 2.79 35.8 11.1
60.13 44.00 1.22 4.33 56.7 9.4

Throughput CICS CPU% VTAM CPU% TCP/IP CPU% Total CPU% CPU ms/request
13.67 6.19 0.41 0.83 16.5 12.0
16.86 7.28 0.40 0.81 17.4 10.3
22.23 9.33 0.39 1.05 19.5 8.8
32.56 13.06 0.51 1.27 23.2 7.1
60.96 22.58 0.71 1.90 33.2 5.4

Throughput CICS CPU% VTAM CPU% TCP/IP CPU% Total CPU% CPU ms/request
13.56 9.10 0.26 1.19 19.0 14.0
16.85 10.70 0.39 1.29 20.5 12.2
22.24 13.64 0.50 1.63 23.7 10.7
32.52 19.14 0.60 2.17 29.5 9.1
60.62 33.61 1.03 3.42 45.4 7.5

Throughput CICS CPU% VTAM CPU% TCP/IP CPU% Total CPU% CPU ms/request
13.58 11.69 0.38 1.40 21.9 16.1
16.80 13.93 0.37 1.62 23.8 14.1
22.21 17.85 0.60 2.05 28.4 12.8
32.28 24.94 0.82 2.68 35.9 11.1

Table 94: SSL 1 byte transmission, triple DES, CWS direct connection

Table 95: SSL 8KB transmission, triple DES, CWS direct connection

Table 96: SSL 16KB transmission, triple DES, CWS direct connection

Table 97: SSL 1 byte transmission, triple DES with crypto, CWS direct connection

Table 98: SSL 8KB transmission, triple DES with crypto, CWS direct connection

60.17 43.92 1.22 4,33 57.5 9.5

Throughput CICS CPU% VTAM CPU% TCP/IP CPU% Total CPU% CPU ms/request
13.59 7.60 0.27 0.81 17.1 12.6
16.91 8.88 0.26 0.79 18.2 10.8
22.19 11.26 0.26 1.02 20.6 9.3
32.48 15.72 0.37 1.24 25.0 7.7
61.03 27.51 0.70 1.86 37.2 6.1

Throughput CICS CPU% VTAM CPU% TCP/IP CPU% Total CPU% CPU ms/request
13.49 25.02 0.35 1.04 33.2 24.6
16.72 30.17 0.34 1.13 38.3 22.9
22.01 38.65 0.44 1.44 47.2 21.4
32.13 54.88 0.65 1.94 64.1 19.9
59.41 100.44 1.06 3.27 111.0 18.7

Throughput CICS CPU% VTAM CPU% TCP/IP CPU% Total CPU% CPU ms/request
13.47 41.57 0.33 1.21 50.4 37.4
16.62 50.38 0.43 1.41 59.3 35.6
21.87 65.03 0.53 1.71 74.2 33.9
31.82 93.89 0.74 2.53 104.0 32.7
56.90 164.92 1.03 3.62 176.4 31.0

Throughput CICS CPU% VTAM CPU% TCP/IP CPU% Total CPU% CPU ms/request
13.63 7.85 0.41 0.81 17.6 12.9
16.92 9.22 0.4 0.94 18.7 11.1
22.17 11.45 0.51 1.03 21.1 9.5
32.51 16.14 0.62 1.24 25.7 7.9
60.67 28.01 0.82 1.87 38.1 6.3

Throughput CICS CPU% VTAM CPU% TCP/IP CPU% Total CPU% CPU ms/request
13.54 15.78 0.49 1.11 25.2 18.6
16.82 18.85 0.48 1.32 28.1 16.7
22.07 23.94 0.59 1.64 33.5 15.2
32.24 33.62 0.79 2.15 43.7 13.6

Table 99: SSL 16KB transmission, triple DES with crypto, CWS direct connection

B.4.3 SSL handshakes with the CICS WebServer Plugin

The following data, presented in Table 100 on page 195 through Table 103 on page 196 , shows the
results for the SSL handshake tests with CWS and the CICS WebServer Plugin. All the handshake tests
used non-persistent HTTP connections and sent 1 byte of data from the CICS application.

Table 100: SSL full handshake, 1024 bit key, WebServer Plugin

Table 101: SSL full handshake, 512-bit key, WebServer Plugin

Table 102: SSL null handshake, 1024-bit key, WebServer Plugin

59.26 59.35 1.20 3.48 71.0 12.0

Throughput CICS CPU% VTAM CPU% TCP/IP CPU% Total CPU% CPU ms/request
13.48 22.96 0.35 1.29 31.75 23.6
16.69 27.59 0.46 1.49 36.4 21.8
21.96 35.36 0.56 1.90 44.7 20.3
31.96 50.02 0.87 2.51 60.1 18.8
58.04 90.16 1.17 3.95 102.0 17.6

Throughput CICS
CPU%

Web server
CPU%

VTAM
CPU%

TCP/IP
CPU%

Total
CPU%

CPU
ms/request

12.62 2.51 154.18 0.98 2.73 171.0 135.5
15.28 3.09 195.39 1.21 3.31 214.3 140.2
19.00 4.14 259.73 1.57 4.25 281.2 148.0
21.5 5.01 320.09 1.82 5.12 344.1 160.0
21.44 5.00 319.52 1.93 5.12 343.9 160.4

Throughput CICS
CPU%

Web server
CPU%

VTAM
CPU%

TCP/IP
CPU%

Total
CPU%

CPU
ms/request

12.62 2.62 59.81 1.14 2.84 76.8 60.8
15.46 3.28 81.16 1.29 3.40 101.7 65.8
19.90 4.48 117.33 1.70 4.36 140.0 70.4
26.5 6.45 183.33 2.11 5.95 210.6 79.5
27.78 7.16 208.96 2.51 6.78 239.9 86.3

Throughput CICS
CPU%

Web server
CPU%

VTAM
CPU%

TCP/IP
CPU%

Total
CPU%

CPU
ms/request

12.57 2.63 18.29 0.96 2.51 35.5 28.2
15.35 3.16 21.92 1.05 3.05 40.6 26.4
19.63 4.06 28.32 1.39 3.71 48.8 24.9
29.96 5.50 39.42 1.72 4.81 62.8 21.0

Table 103: SSL null handshake, 512-bit key, WebServer Plugin

B.4.4 SSL data transmission with the CICS WebServer Plugin

The following data, presented in Table 104 through Table 106, shows the results for the SSL data
transmission tests with CWS and the CICS WebServer Plugin. All the data transmission tests used
persistent HTTP connections.

Table 104: SSL 1 byte transmission, RC4-MD5(40 bit), WebServer Plugin

Table 105: SSL 8KB transmission, RC4-MD5(40 bit), CWS direct connection

Table 106: SSL 16KB transmission, RC4 -MD5(40 bit), CWS direct connection

42.87 8.87 65.99 2.62 7.28 96.3 22.5

Throughput CICS
CPU%

Web server
CPU%

VTAM
CPU%

TCP/IP
CPU%

Total
CPU%

CPU
ms/request

12.68 2.62 18.36 0.95 2.62 35.7 28.2
15.42 3.18 22.35 1.18 3.06 41.1 26.7
19.67 4.06 28.30 1.39 3.71 49.0 24.9
26.88 5.40 39.55 1.72 4.71 63.0 23.4
42.78 8.82 66.47 2.52 7.22 97.0 22.7

Throughput CICS
CPU%

Web server
CPU%

VTAM
CPU%

TCP/IP
CPU%

Total
CPU%

CPU
ms/request

13.62 3.28 10.98 4.16 0.76 27.0 19.8
16.86 3.97 13.41 4.10 0.87 30.1 17.9
22.21 5.19 17.37 4.10 1.09 35.4 15.9
32.55 7.14 23.88 4.10 7.14 43.9 13.5
60.33 12.62 40.45 4.39 2.14 66.7 11.1

Throughput CICS
CPU%

Web server
CPU%

VTAM
CPU%

TCP/IP
CPU%

Total
CPU%

CPU
ms/request

13.61 3.81 14.97 4.05 0.86 31.3 23.0
16.85 4.56 18.26 4.08 1.08 35.6 21.1
22.15 5.88 23.15 4.23 1.29 42.0 19.0
32.23 8.23 32.00 4.34 1.60 53.3 16.5
59.34 14.31 55.68 4.88 2.55 84.4 14.2

Throughput CICS
CPU%

Web
server

VTAM
CPU%

TCP/IP
CPU%

Total
CPU%

CPU
ms/request

13.52 4.06 18.40 4.06 1.08 35.25 26.1
16.81 5.05 22.45 4.11 1.18 40.2 23.9
22.08 6.55 28.83 4.25 1.49 48.35 21.9

B.5 CICS Transaction Gateway
In this section we present the results of our tests using the OS/390 CICS Transaction Gateway (CTG),
first using a Java applets and then using Java servlets. For further discussion of this data refer to Chapter
7 , "The OS/390 CTG" on page 103 .

B.5.1 CTG Java applets.

The following data, presented in Table 107 on page 198 through Table 114 on page 201 , shows the
results for CTG Java applets.Throughput is defined as ECI requests per second. For the tests with the
TCP/IP protocol 500 clients were used and for the tests with the HTTP protocol 100 clients were used.

The measurements in Table 107 were performed using a TCP/IP connection from the applet to the CTG
Java gateway application that was not re-used.

Table 107: Applets, TCP/IP, no connection re-use, COMMAREA 100 bytes

The following measurements in Table 108 on page 199 through Table 113 on page 200 re-used the
TCP/IP connection across ECI calls. The figures are for a range of COMMAREA sizes from 100 bytes
to 16,000 bytes.

Table 108: Applets, TCP/IP connection, COMMAREA 100 bytes

Table 109: Applets, TCP/IP connection, COMMAREA 1000 bytes

32.27 9.19 40.34 3.59 1.90 61.85 19.2
59.58 16.24 71.06 2.62 3.05 99.4 16.7

Throughput CICS
CPU%

CTG
CPU%

VTAM
CPU%

TCP/IP
CPU%

Total
CPU%

CPU
ms/request

52.89 7.9 89.0 2.8 7.9 123.6 23.4
61.92 9.4 104.5 3.3 9.3 144.3 23.30
69.51 10.7 122.0 3.6 10.3 166.8 24.0
76.55 11.8 136.6 4.0 11.3 185.0 24.2
90.93 14.3 167.3 4.9 14.0 225.7 24.8

Throughput CICS
CPU%

CTG
CPU%

VTAM
CPU%

TCP/IP
CPU%

Total
CPU%

CPU
ms/request

32.53 4.5 26.6 0.5 1.3 41.9 12.9
49.28 6.8 39.4 0.8 1.8 58.3 11.8
65.79 9.1 54.8 1.0 2.4 77.6 11.8
98.55 13.7 82.3 1.4 3.5 112.9 11.5
133.0 19.9 135.0 1.8 4.9 185.7 14.0

Throughput CICS
CPU%

CTG
CPU%

VTAM
CPU%

TCP/IP
CPU%

Total
CPU%

CPU
ms/request

Table 110: Applets, TCP/IP connection, COMMAREA 2000 bytes

Table 111: Applets, TCP/IP connection, COMMAREA 4000 bytes

Table 112: Applets, TCP/IP connection, COMMAREA 8000 bytes

Table 113: Applets, TCP/IP connection, COMMAREA 16000 bytes

30.37 4.3 28.6 0.5 1.2 44.2 14.5
46.02 6.5 44.1 0.7 1.8 63.4 13.8
61.47 8.8 58.6 0.9 2.4 81.9 13.3
91.75 13.3 89.9 1.3 3.5 122.4 13.3
117.7 18.5 143.7 1.7 4.7 194.0 16.5

Throughput CICS
CPU%

CTG
CPU%

VTAM
CPU%

TCP/IP
CPU%

Total
CPU%

CPU
ms/request

28.81 4.2 35.9 0.5 1.2 51.9 18.0
43.45 6.4 53.0 0.7 1.8 77.4 17.8
57.86 8.5 70.1 0.9 2.3 94.3 16.3
78.91 12.5 113.0 1.2 3.2 150.9 19.1
102.60 16.5 151.2 1.4 4.2 200.7 19.6

Throughput CICS
CPU%

CTG
CPU%

VTAM
CPU%

TCP/IP
CPU%

Total
CPU%

CPU
ms/request

29.41 4.6 38.4 0.5 1.3 55.2 18.8
44.10 6.9 56.2 0.8 1.9 77.4 17.6
58.59 9.3 76.3 1.0 2.8 124.0 21.2
79.86 13.5 120.1 1.2 3.5 160.3 20.1
99.42 17.1 152.4 1.4 4.5 202.6 20.4

Throughput CICS
CPU%

CTG
CPU%

VTAM
CPU%

TCP/IP
CPU%

Total
CPU%

CPU
ms/request

32.90 5.6 49.9 0.6 1.6 68.7 20.9
48.55 8.4 76.4 0.9 2.3 101.6 20.9
62.36 11.2 103.3 1.1 3.0 137.4 22.0
84.03 15.6 142.9 1.4 4.3 189.7 22.6
91.46 17.1 154.0 1.5 4.8 204.7 22.4

Throughput CICS
CPU%

CTG
CPU%

VTAM
CPU%

TCP/IP
CPU%

Total
CPU%

CPU
ms/request

25.90 5.1 53.5 0.8 2.4 73.5 28.4
38.31 7.6 79.8 1.2 3.4 106.4 27.8
49.74 10.3 102.3 1.5 4.7 138.0 27.7
66.52 14.3 132.0 2.1 7.1 180.2 27.1

In the following measurements in Table 114 the work from the 500 clients was balanced across four
CTG Java gateway application address spaces using TCP/IP port sharing. The TCP/IP connection was
re-used across ECI calls.The COMMAREA size was 100 bytes. The CTG CPU usage is the sum of all
four CTG address spaces.

Table 114: Applets, TCP/IP connection, multiple CTG address spaces

The following measurements in Table 115 on page 202 through Table 120 on page 203 were performed
using a HTTP connection from the applet to the CTG Java gateway application that was not re-used, a
range of COMMAREA sizes from 100 bytes to 16,000 bytes was used.

Table 115: Applets, HTTP connection, COMMAREA 100 bytes

Table 116: Applets, HTTP connection, COMMAREA 1000 bytes

Table 117: Applets, HTTP connection, COMMAREA 2000 bytes

81.31 17.8 154.6 2.6 8.7 212.1 26.1

Throughput CICS
CPU%

All CTG
CPU%

VTAM
CPU%

TCP/IP
CPU%

Total
CPU%

CPU
ms/request

98.8 13.4 54.8 1.3 3.3 84.1 8.5
123.3 16.6 69.3 1.6 4.0 103.6 8.4
164.1 22.0 93.2 2.1 5.3 135.8 8.3
242.2 32.4 146.5 2.8 7.5 206.5 8.5
454.1 60.7 296.3 4.3 13.8 241.5 5.3

Throughput CICS
CPU%

CTG
CPU%

VTAM
CPU%

TCP/IP
CPU%

Total
CPU%

CPU
ms/request

13.59 2.0 72.1 0.6 1.5 90.4 66.5
19.09 2.9 103.6 0.7 1.8 126.0 66.0
23.78 3.6 134.8 1.0 2.3 163.7 68.8
27.15 4.2 146.4 1.1 2.8 175.2 64.5
31.79 4.9 181.3 1.4 3.4 216.9 68.2

Throughput CICS
CPU%

CTG
CPU%

VTAM
CPU%

TCP/IP
CPU%

Total
CPU%

CPU
ms/request

13.53 2.0 71.3 0.6 1.4 89.0 65.9
19.02 2.9 104.4 0.7 1.8 127.3 66.9
23.82 3.7 134.8 1.0 2.3 162.9 68.4
27.03 4.2 149.1 1.2 2.8 178.3 66.0
31.73 4.9 177.7 1.4 3.3 213.0 67.1

Throughput CICS
CPU%

CTG
CPU%

VTAM
CPU%

TCP/IP
CPU%

Total
CPU%

CPU
ms/request

Table 118: Applets, HTTP connection, COMMAREA 4000 bytes

Table 119: Applets, HTTP connection, COMMAREA 8000 bytes

Table 120: Applets, HTTP connection, COMMAREA 16000 bytes

B.5.2 CTG Java servlets

The following data, presented in Table 121 on page 204 through Table 124 on page 205 , shows the
results for CTG Java servlets.Throughput is defined as ECI requests per second (or Web requests per
second if no ECI call). For all the tests 100 clients were used. For further details on the test scenario
refer to Chapter 7 , "The OS/390 CTG" on page 103 .

The following CTG servlet measurements in Table 121 on page 204 through Table 124 on page 205

13.64 2.0 71.80 0.8 1.9 89.9 65.9
19.04 2.8 109.7 0.9 2.1 135.2 71.0
23.85 3.7 140.9 1.2 2.9 171.8 72.0
27.14 4.1 152.5 1.4 3.4 183.9 67.7
29.98 4.7 170.7 1.6 4.0 205.9 68.7

Throughput CICS
CPU%

CTG
CPU%

VTAM
CPU%

TCP/IP
CPU%

Total
CPU%

CPU
ms/request

13.64 2.1 66.9 0.8 2.5 84.9 62.2
18.96 2.9 106.8 0.9 2.3 132.1 69.7
23.85 3.5 132.5 1.0 2.2 160.4 67.3
27.22 4.1 148.6 1.1 2.8 178.2 65.5
31.68 4.8 178.3 1.4 3.3 213.8 67.5

Throughput CICS
CPU%

CTG
CPU%

VTAM
CPU%

TCP/IP
CPU%

Total
CPU%

CPU
ms/request

13.56 2.3 68.8 1.0 3.0 88.2 65.0
19.02 2.9 102.5 0.8 1.7 125.9 66.2
23.78 3.7 132.0 1.0 2.3 160.5 67.5
27.29 4.2 148.4 1.2 2.8 178.0 65.2
31.48 4.9 180.9 1.4 3.3 217.1 69.0

Throughput CICS
CPU%

CTG
CPU%

VTAM
CPU%

TCP/IP
CPU%

Total
CPU%

CPU
ms/request

13.30 2.6 70.8 1.3 4.0 90.5 68.0
18.95 3.9 119.9 1.8 5.2 150.8 79.6
23.84 3.6 130.1 1.0 2.2 155.8 65.33
27.25 4.1 146 1.1 2.7 173.2 63.5
31.85 4.8 176.8 1.4 3.2 209.2 65.7

were conducted to measure the effect of persistent HTTP connection and the cost of the ECI call within
the servlet. The COMMAREA size was 39 bytes for all servlets that used the ECI.

Table 121: Servlets, persistent HTTP connection, ECI

Table 122: Servlets, non-persistent HTTP connection, ECI

Table 123: Servlets, persistent HTTP connection, no ECI

Table 124: Servlets, non-persistent HTTP connection, no ECI

Appendix C: Using the additional material

Throughput CICS
CPU%

Web server
CPU%

VTAM
CPU%

TCP/IP
CPU%

Total
CPU%

CPU
ms/request

19.69 2.8 46.2 0.4 0.9 60.4 30.7
24.5 3.5 57.6 0.5 0.4 73.2 29.9
32.34 4.7 77.8 0.6 1.2 97.4 30.1
47.37 7.3 124.6 0.8 1.6 158.7 33.5
60.82 9.7 166.4 1.0 2.2 211.6 34.8

Throughput CICS
CPU%

Web server
CPU%

VTAM
CPU%

TCP/IP
CPU%

Total
CPU%

CPU
ms/request

18.89 2.7 47.7 0.9 1.8 63.7 33.7
21.10 3.3 58.5 1.0 2.2 76.5 36.3
27.15 4.2 77.5 1.2 2.7 101.7 37.5
38.29 7.3 113 1.6 4.0 150.6 39.3
47.89 9.7 141 2.0 4.8 186.9 39.0

Throughput CICS
CPU%

Web server
CPU%

VTAM
CPU%

TCP/IP
CPU%

Total
CPU%

CPU
ms/request

19.75 0.0 36.4 0.4 0.8 47.3 24.0
24.49 0.0 45.2 0.5 0.9 56.9 23.2
32.42 0.0 59. 0.5 1.1 72.0 22.2
47.37 0.0 96.7 0.7 1.5 118.7 23.1
62.16 0.0 1313 0.9 1.9 161.9 26.0

Throughput CICS
CPU%

Web server
CPU%

VTAM
CPU%

TCP/IP
CPU%

Total
CPU%

CPU
ms/request

18.89 0.0 36.6 0.8 1.7 50.5 26.7
21.71 0.0 42.8 0.9 2.0 57.9 26.7
27.3 0.0 55.8 1.1 .2.5 72.7 26.6
38.48 0.0 75.0 1.5 3.5 94.9 24.7
48.80 0.0 106.8 1.8 4.4 143.5 29.4

Overview
This redbook also contains additional material that can be downloaded from the Internet as described
below.

C.1 Locating the additional material on the Internet
The Web material associated with this redbook is also available in softcopy on the Internet from the
IBM Redbooks Web server. Point your Web browser to:

ftp://www.redbooks.ibm.com/redbooks/SG24-5748

Alternatively, you can go to the IBM Redbooks Web site at:

http://www.redbooks.ibm.com/

Select the Additional materials and open the directory that corresponds with the redbook form number.

C.2 Using the Web material
The additional Web material that accompanies this redbook includes the following:

C.2.1 System requirements for downloading the Web material

The following system configuration is recommended for downloading the additional Web material.

C.2.2 How to use the Web material

Create a subdirectory (folder) on your workstation, download the contents of the Web material into this
folder, then unzip the file.

Appendix D: Special notices
Overview
This publication is intended to help technical professionals to understand and plan for the performance

File name Description
TraderCicsWebSamples.zip Zipped code samples for the CICS Trader application, and Web-

enablement using CWS and the CTG.

Hard disk space : 1 MB minimum
Operating System : Windows NT or 95
Processor : Intel 286 or higher
Memory : 16 MB

ftp://www.redbooks.ibm.com/redbooks/SG24
http://www.redbooks.ibm.com/

impact of Web-enabling legacy CICS applications. The information in this publication is not intended as
the specification of any programming interfaces that are provided by CICS Transaction Server v1.3 or
OS/390 WebSphere Application Server. See the PUBLICATIONS section of the IBM Programming
Announcement for CICS Transaction Server, and OS/390 WebSphere Application Server for more
information about what publications are considered to be product documentation.

References in this publication to IBM products, programs or services do not imply that IBM intends to
make these available in all countries in which IBM operates. Any reference to an IBM product, program,
or service is not intended to state or imply that only IBM's product, program, or service may be used.
Any functionally equivalent program that does not infringe any of IBM's intellectual property rights may
be used instead of the IBM product, program or service.

Information in this book was developed in conjunction with use of the equipment specified, and is
limited in application to those specific hardware and software products and levels.

IBM may have patents or pending patent applications covering subject matter in this document. The
furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to the IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk,
NY 10504-1785.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact IBM
Corporation, Dept. 600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and conditions, including in some
cases, payment of a fee.

The information contained in this document has not been submitted to any formal IBM test and is
distributed AS IS. The use of this information or the implementation of any of these techniques is a
customer responsibility and depends on the customer's ability to evaluate and integrate them into the
customer's operational environment. While each item may have been reviewed by IBM for accuracy in a
specific situation, there is no guarantee that the same or similar results will be obtained elsewhere.
Customers attempting to adapt these techniques to their own environments do so at their own risk.

Any pointers in this publication to external Web sites are provided for convenience only and do not in
any manner serve as an endorsement of these Web sites.

Any performance data contained in this document was determined in a controlled environment, and
therefore, the results that may be obtained in other operating environments may vary significantly. Users
of this document should verify the applicable data for their specific environment.

This document contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples contain the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

Reference to PTF numbers that have not been released through the normal distribution process does not
imply general availability. The purpose of including these reference numbers is to alert IBM customers
to specific information relative to the implementation of the PTF when it becomes available to each

customer according to the normal IBM PTF distribution process.

The following terms are trademarks of the International Business Machines Corporation in the United
States and/or other countries:

The following terms are trademarks of other companies:

C-bus is a trademark of Corollary, Inc. in the United States and/or other countries.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States and/or other countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in
the United States and/or other countries.

PC Direct is a trademark of Ziff Communications Company in the United States and/or other countries
and is used by IBM Corporation under license.

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel Corporation in the
United States and/or other countries.

UNIX is a registered trademark in the United States and other countries licensed exclusively through
The Open Group.

SET and the SET logo are trademarks owned by SET Secure Electronic Transaction LLC.

Other company, product, and service names may be trademarks or service marks of others.

AIX AS/400
AT CICS
CICS/ESA CICS/MVS
CICS/VSE CICSPlex
CT DB2
DFSMS eNetwork
IBM ¯ IMS
Language Environment MQ
Netfinity OS/390
Parallel Sysplex RACF
RAMAC RMF
RS/6000 S/390
SecureWay SP
SP2 System/390
VisualAge VTAM
WebSphere XT
400

Appendix E: Related publications
Overview
The publications listed in this section are considered particularly suitable for a more detailed discussion
of the topics covered in this redbook.

E.1 International Technical Support Organization publications
For information on ordering these ITSO publications see " How to get ITSO redbooks " on page 217 .

l Revealed! Architecting Web Access to CICS , SG24-5466

l OS/390 Version 2 Release 4 Performance Figures for CICS Web-Enabled Applications , SG24-
5612

l CICS Transaction Server for OS/390 Version 1 Release3: Web Support and 3270 Bridge , SG24-
5480

l Revealed! CICS Transaction Gateway with More CICS Clients Unmasked , SG24-5277

l TCP/IP Implementation Guide , SG24-5227

l IBM SecureWay Host On-Demand: Enterprise Communications Era Network Computing , SG24-
2149

l Java Application Development for CICS: Base Services and CORBA Client Support , SG24-5275

l TCP/IP Tutorial and Technical Overview , GG24-3376

l CICS/ESA and TCP/IP for MVS Sockets Interface , GG24-4026

l Enterprise-Wide Security Architecture and Solutions , SG24-4579

l VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets - CICS Connector , SG24-
5265

l OS/390 MVS Parallel Sysplex Capacity Planning , SG24-4680

l OS/390 e-business Infrastructure: IBM WebSphere Application Server 1.1 - Customizing and
Usage , SG24-5604

E.2 Redbooks on CD-ROMs
Redbooks are also available on the following CD-ROMs. Click the CD-ROMs button at
http://www.redbooks.ibm.com/ for information about all the CD-ROMs offered, updates and formats.

http://www.redbooks.ibm.com/

E.3 Other publications
These publications are also relevant as further information sources:

l CICS Performance Guide , SC33-1699

l CICS Internet Guide , SC34-5445

l CICS Internet and External Interfaces Guide , SC33-1944

l CICS Web Interface Guide , SC33-1892

l IBM HTTP Server for OS/390 Release 7, Planning, Installing, and Using, Version 5.1 , SC31-
8690

l WebSphere Application Server for OS/390, Application Server Planning, Installing,and Using,
Version 1.1 , GC34-4757

l IBM TCP/IP Performance Tuning Guide , SC31-7188

l OS/390 eNetwork Communications Server, IP Application Programming Interface Guide , SC31-
8516

l CICS Transaction Gateway Administration Guide , SC34-5448

l IBM TCP/IP Performance Tuning Guide , SC31-7188

l OS/390 eNetworks Communications Server: IP Planning and Migration Guide , SC31-8512

l Communications Server: IP Configuration Manual , SC31-8513

l Applied Cryptography, ISBN 0-471-11709-9 , SR28-5808

CD-ROM Title Collection Kit Number
System/390 Redbooks Collection SK2T-2177
Networking and Systems Management Redbooks Collection SK2T-6022
Transaction Processing and Data Management Redbooks Collection SK2T-8038
Lotus Redbooks Collection SK2T-8039
Tivoli Redbooks Collection SK2T-8044
AS/400 Redbooks Collection SK2T-2849
Netfinity Hardware and Software Redbooks Collection SK2T-8046
RS/6000 Redbooks Collection (BkMgr) SK2T-8040
RS/6000 Redbooks Collection (PDF Format) SK2T-8043
Application Development Redbooks Collection SK2T-8037
IBM Enterprise Storage and Systems Management Solutions SK3T-3694

How to get ITSO redbooks
Overview
This section explains how both customers and IBM employees can find out about ITSO redbooks,
redpieces, and CD-ROMs. A form for ordering books and CD-ROMs by fax or e-mail is also provided.

l Redbooks Web Site http://www.redbooks.ibm.com/

Search for, view, download, or order hardcopy/CD-ROM redbooks from the redbooks Web site.
Also read redpieces and download additional materials (code samples or diskette/CD-ROM
images) from this redbooks site.

Redpieces are redbooks in progress; not all redbooks become redpieces and sometimes just a few
chapters will be published this way. The intent is to get the information out much quicker than the
formal publishing process allows.

l E-mail Orders

Send orders by e-mail including information from the redbooks fax order form to:

l Telephone Orders

l Fax Orders

This information was current at the time of publication, but is continually subject to change. The latest
information may be found at the redbooks Web site.

 e-mail address
In United States < usib6fpl@ibmmail.com >
Outside North
America

Contact information is in the "How to Order" section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl

United States
(toll free)

1-800-879-2755

Canada (toll
free)

1-800-IBM-4YOU

Outside North
America

Country coordinator phone number is in the "How to Order" section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl

United States
(toll free)

1-800-445-9269

Canada 1-403-267-4455
Outside North
America

Fax phone number is in the "How to Order" section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl

http://www.redbooks.ibm.com/
mailto:usib6fpl@ibmmail.com
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl

IBM Intranet for Employees

IBM employees may register for information on workshops, residencies, and redbooks by accessing the
IBM Intranet Web site at http://w3.itso.ibm.com/ and clicking the ITSO Mailing List button. Look in the
Materials repository for workshops, presentations, papers, and Web pages developed and written by the
ITSO technical professionals; click the Additional Materials button. Employees may access MyNews at
http://w3.ibm.com/ for redbook, residency, and workshop announcements.

Glossary
An excellent glossary of Internet and Internet related terms is available at:

http://www.matisse.net/files/glossary.html

Other terms not covered in the above-mentioned Web document or clarified in this document are listed
below.

abend.
Abnormal end of task.

API.
Application programming interface. A set of calling conventions defining how a service is
invoked through a software package.

APPC.
Advanced program-to-program communication. An implementation of the SNA LU 6.2 protocol
that allows interconnected systems to communicate and share the processing of programs.

asynchronous.
Without regular time relationship; unexpected or unpredictable with respect to the execution of
program instructions. See synchronous .

browser.
An application that displays World Wide Web documents, usually referred to as a Web browser.

CEC
(also known as CPC). Central Electronic Complex (or Central Processing Complex) is the
physical machine that contains main storage(memory), central processing units and connections to
devices.

CPU.
Central Processing Unit (also known as an engine or processor) is the part of the CEC that
executes the program instructions. There may be one or many CPUs in a CEC. Each CPU in the
CEC may access the main storage (memory) in that CEC. If there are multiple CPUs in a CEC,
then multiprocessing (or simultaneous execution of two threads of control) is possible.

CERN.
The Conseil Europeen pour la Recherche Nucleaire (European Particle Physics Laboratory),
which developed hypertext technologies.

distributed program link (DPL).
Enables an application program executing in one CICS system to link (pass control) to a program
in a different CICS system. The linked-to program executes and returns a result to the linking
program. This process is equivalent to remote procedure calls (RPCs). You can write applications
that issue RPCs that can be received by members of the CICS family.

http://w3.itso.ibm.com/
http://w3.ibm.com/
http://www.matisse.net/files/glossary.html

distributed transaction processing (DTP).
Enables a transaction running in one CICS system to communicate synchronously with
transactions running in other systems. The transactions are designed and coded specifically to
communicate with each other. This method is typically used by banks, for example in "just-in-
time" stock replacement.

Customer Information Control System (CICS).
A distributed on-line transaction processing system designed to support a network of many
terminals. The CICS family of products is available for a variety of platforms ranging from a
single workstation to the largest mainframe.

client.
As in client/server computing, the application that makes requests to the server and, often, handles
the interaction necessary with the user.

client/server computing.
A form of distributed processing, in which the task required to be processed is accomplished by a
client portion that requests services and a server portion that fulfills those requests. The client and
server remain transparent to each other in terms of location and platform. See client and server .

commit.
An action that an application takes to make permanent the changes it has made to recoverable
resources during a logical unit of work.

Common Gateway Interface (CGI).
The defined standard for the communications between HTTP servers and external executable
programs.

conversational.
A communication model where two distributed applications exchange information by way of a
conversation; typically one application starts (or allocates) the conversation, sends some data, and
allows the other application to send some data. Both applications continue in turn until one
decides to finish (or deallocate). The conversational model is a synchronous form of
communication.

Coupling facility.

Is a special logical partition that provides high-speed caching, list processing, and locking
functions between systems in a Parallel Sysplex.

database.
(1) A collection of interrelated data stored together with controlled redundancy according to a
scheme to serve one or more applications. (2) All data files stored in the system. (3) A set of data
stored together and managed by a database management system.

Distributed Computing Environment (DCE).
Adopted by the computer industry as a de facto standard for distributed computing. DCE allows
computers from a variety of vendors to communicate transparently and share resources such as
computing power, files, printers, and other objects in the network.

delimiter.
A character or sequence of characters used as a separator in text or data files.

Distributed processing.
An application or systems model in which function and data can be distributed across multiple
computing resources connected on a LAN or WAN. See client/server computing .

External Call Interface (ECI).
An application programming interface (API) that enables a non-CICS client application to call a
CICS program as a subroutine. The client application communicates with the server CICS
program using a data area called a COMMAREA.

External Presentation Interface (EPI).

An application programming interface (API) that allows a non-CICS application program to
appear to the CICS system as one or more standard 3270 terminals. The non-CICS application can
start CICS transactions and send and receive standard 3270 data streams to those transactions.

environment.
The collective hardware and software configuration of a system.

File Transfer Protocol (FTP).
A protocol that defines how to transfer files from one computer to another.

forms.
Parts of HTML documents that allow users to enter data.

function shipping.
A CICS Inter Systems Communication protocol that enables an application program running in
one CICS system to access resources owned by another CICS system. In the resource-owning
system, a mirror transaction is initiated to perform the necessary operation; for example, to access
CICS files or temporary storage, and to reply to the requester.

gateway.
Software that transfers data between normally incompatible applications or between networks.

Graphic Interchange Format (GIF).
256-color graphic format.

Graphical user interface (GUI).
A style of user interface that replaces the character-based screen with an all-points-addressable,
high-resolution graphics screen. Windows display multiple applications at the same time and
allow user input by means of a keyboard or a pointing device such as mouse, pen, or trackball.

host.
(1) In a computer network, a computer providing services such as computation, database access,
and network control functions. (2) In a multiple computer installation, the primary or controlling
computer.

hypertext.
Text that activates connection to other documents when selected.

Hypertext Markup Language (HTML).
Standard language used to create hypertext documents.

Hypertext Transmission Protocol (HTTP).
Standard WWW client/server communications protocol.

Internet.
A collection of networks.

LU type 6.2 (LU 6.2).
A type of logical unit used for CICS intersystem communication (ISC). LU 6.2 architecture
supports CICS host-to-system-level products and CICS host-to-device-level products. APPC is the
protocol boundary of the LU 6.2 architecture.

Logical unit of work (LUW).

An update that durably transforms a resource from one consistent state to another consistent state.
A sequence of processing actions (for example, database changes) that must be completed before
any of the individual actions can be regarded as committed. When changes are committed (by
successful completion of the LUW and recording of the synch point on the system log), they do
not need to be backed out after a subsequent error within the task or region. The end of an LUW is
marked in a transaction by a synch point that is issued by either the user program or the CICS
server, at the end of task. If there are no user synch points, the entire task is an LUW.

LPAR.
Logical Partition is a subset of the CEC hardware. The CEC resources, CPUs and main memory,
can be shared between LPARs. Each LPAR is capable of running an instance, or image, of an

operating system.
On-line Transaction Processing (OLTP).

A style of computing that supports interactive applications in which requests submitted by
terminal users are processed as soon as they are received. Results are returned to the requester in a
relatively short period of time. An on-line transaction processing system supervises the sharing of
resources to allow efficient processing of multiple transactions at the same time.

Parallel Sysplex.
This is a sysplex that uses one or more coupling facilities.

proxy.
A software gateway between connecting networks that allows communication between the two
networks, by acting as both a client and a server. A popular usage of a proxy is a HTTP proxy
server, which allow Web browsers in a private intranet to connect to Web servers on the Internet,
but restricts all other network communications between the two networks.

pseudo-conversational.
A type of CICS application design that appears to the user as a continuous conversation but
consists internally of multiple tasks.

server.
Any computing resource dedicated to responding to client requests. Servers can be linked to
clients through LANs or WANs to perform services, such as printing, database access, fax, and
image processing, on behalf of multiple clients at the same time.

Socket Secure (SOCKS).
An proxy gateway that allows compliant client code (client code made socket secure) to establish
a TCP/IP session with a remote host via means of the SOCKS gateway.

Standard Generalized Markup Language (SGML).
The standard that defines several markup languages, HTML included.

synchronous.
(1) Pertaining to two or more processes that depend on the occurrence of a specific event such as a
common timing signal. (2) Occurring with a regular or predictable time relationship.

syncpoint (Synchronization point).
A logical point in execution of an application program or transaction where the changes made to
the recoverable resources are consistent, complete and can be committed. The output, which has
been held up to that point, is sent to its destination, the input is removed from the message queues,
and the database updates are made available to other applications.

sysplex.
A sysplex is a set of MVS systems (also called images) that communicate using multi-system
hardware components and software. Systems in a sysplex will share disk storage.

transaction.
A unit of processing (consisting of one or more application programs) initiated by a single
request. A transaction can require the initiation of one or more tasks for its execution.

transaction processing.
A style of computing that supports interactive applications in which requests submitted by users
are processed as soon as they are received. Results are returned to the requester in a relatively
short period of time. A transaction processing system supervises the sharing of resources for
processing multiple transactions at the same time.

transaction routing.
Enables a terminal connected to one CICS system to run a transaction in another CICS system. It
is common for CICS/ESA, CICS/VSE, and CICS/MVS users to have a terminal-owning region
(TOR) that "owns" end-user network resources.

List of abbreviations

AIX Advanced Interactive eXecutive
AOR application owning region
API application programming interface
APPC Advanced Program-to-Program Communication
ASCII American National Standard Code for Information Interchange
BLI business logic interface
BMS basic mapping support
CGI Common Gateway Interface
CICS Customer Information Control System
CIG CICS Internet Gateway
COMMAREA communication area
CORBA Common Object Request Broker
CSD CICS system definition
CTG CICS Transaction Gateway
CWI CICS Web Interface
CWS CICS Web support
DNS Domain Name Server
DPL distributed program link
DTP distributed transaction processing
ECI external call interface
EJB Enterprise JavaBeans
EPI external presentation interface
ESA Enterprise Systems Architecture
ESI external security interface
EXCI external CICS interface
HOD Host on-Demand
HTML Hypertext Markup Language
HTTP Hypertext Transfer Protocol
IBM International Business Machines Corporation
IIIOP Internet Inter ORB Protocol
IP Internet Protocol
ISC intersystem communication
ITSO International Technical Support Organization
JCICS CICS Java support
JDK Java Development Kit
JCT Journal Control Table
JIT just-in-time
JNI Java Native Interface
JRE Java Runtime Environment
JVM Java Virtual Machine
LAN local area network

Index

Numerics

3270
BMS 44
RECEIVE 44
SEND 44 , 56
3270 bridge 51
3270 Web bridge 154
See 3270 Web bridge
bridge facilities 54 , 136
garbage collection 13 , 55
HTML templates 56
state management 13 , 44

A

API
DOCUMENT API 66 , 137
WEB API 66 , 67 , 74 , 76 , 137
Application Owning Region (AOR) 159

B

LUW logical unit of work
OLTP on-line transaction processing
RACF Resource Access Control Facility
RDO Resource definition on-line
RMI Java remote method invocation
RPC remote procedure call
SNA Systems Network Architecture
SIT system initialization table
SNT sign-on table
SOCKS socket secure
SSL Secure Socket Layer
TCP/IP Transmission Control Protocol/Internet Protocol
TOR terminal owning region
TRUE task-related user exit
URI Uniform Resource Identifier
URL Uniform Resource Locator or Universal Resource Locator
WLM work load manager
WOR Web owning region
WWW World Wide Web

business logic interface
See also DFHWBBLI
converter 9
Decode 9
Encode 9
business logic interface (BLI) 9

C

capacity planning 31
3270 Web bridge 61
CICS Transaction Gateway 157
CICS Web support 76 , 155
CICS Web support with SSL 96
CICS WebServer Plugin 156
CTG Java applets 119
CTG Java servlets 126
CEC 22 , 161
CICS Transaction Gateway (CTG) 103 , 140 , 151
applets 14 , 17 , 104 , 140
applets See also Java applets
COMMAREA size 115
connection reuse 110 , 115 , 140
connection, HTTP 17 , 114 , 140
connection, TCP/IP 115 , 140
data compression 141 , 142
ECI Java methods 14 , 103
EPI Java methods 15
EXCI, use of 15 , 110 , 141 , 143
Java class library 15
Java gateway application 15
local protocol, with servlets 18
network I/O 109 , 111
security exit 142
servlets 14 , 18 , 106 , 144
servlets See also Java servlets
TCP/IP port sharing 118
Terminal Servlet 15
thread usage 145
threads, connectionManager 143
threads, worker 108
CICS Universal Client 15
CICS Web Interface (CWI) 6
CICS Web support 6
See also 3270 Web bridge
See also business logic interface
alias 9
analyzer 9
CICS WebServer Plugin 7 , 10 , 80 , 134
direct connection 78 , 134
HTML template manager 8

Sockets listener 7 , 9
Web attach transaction 9
CICSPlex System Manager 30 , 149
COMMAREA 4 , 5 , 18
Common Connector Framework (CCF) 16
CORBA, CICS support of 3
CPU
% usage 169
capacity 22
using too much 146
Cryptographic Coprocessor Feature 22 , 88 , 91 , 94 , 138
cryptography
See also Cryptographic Coprocessor Feature
See also Secure Sockets Layer
asymmetric key
See public/private key
DES 88 , 139
public/private key 87
RC4-MD5 91 , 95 , 139
salted data 139
secret key 87
symmetric key
See secret key
CSMI, mirror transaction 10
CWBA, alias transaction 9
CWXN, Web attach transaction 9 , 66 , 135

D

DFHCCNV, data conversion program 9
DFHHTML, HTML template PDS 135
DFHWBA, alias program 9
DFHWBAPI, CICS WebServer Plugin 7
DFHWBBLI, business logic interface 9
DFHWBGB, garbage collection program 13
DFHWBLT, Web bridge exit 13
DFHWBST, state management program 13
DFHWBTTA, Web terminal translation program 13
disk I/O 24 , 44
Distributed Program Link (DPL) 4
dynamic 149
DOCTEMPLATE 135

E

eNetwork Communications Server 27
Dynamic DNS 30 , 148
TCP/IP 27
buffer sizes 135
port sharing 30 , 118 , 159

VTAM 27
generic resource 159
Enqueue/Dequeue 45
Enterprise Access Builder (EAB) 16
EXCI 5
use by CICS Transaction Gateway 15 , 17 , 104
use by CICS WebServer Plugin 7 , 134
extranet 148

H

hardware 161
Host On-Demand
See SecureWay
HTTP 28
data sizes 150
datastream 68 , 134 , 136 , 137
GET 66
headers 134
HTTPS 86
persistent connections 56 , 69 , 88 , 125 , 135
POST 67

I

Integrated Cryptographic Service Facility 88
Internet 25 , 85 , 148
Internet Connection Secure Server
See Web server
intranet 148

J

Java 28
applets 104
Native Interface (JNI) 110
OS/390 JVM performance 123
presentation logic 144
servlets 106 , 144
servlets, design of 110

L

Language Environment (LE) options 24
Large System Performance Reference (LSPR) 31
linear fit equations 47 , 77
Lotus Domino Go Webserver
See Web server

N

network
adapter 25
ATM LAN emulation 161
infrastructure 25
network I/O 25 , 44 , 109
See also Internet, intranet and extranet

P

paging 23
performance
See also disk I/O
See also network I/O
bottleneck 21
CPU capacity 22
guidelines 21
programming 4
See also API
business logic 4 , 44 , 65 , 150
COMMAREA manipulation 7 , 74
presentation logic 4 , 65 , 69 , 150
Web-aware 7 , 65
pseudo-conversation 55 , 150
continuous vs. non-continuous 60
length of 136

R

response times 72
R-square
See linear fit equations

S

Secure Sockets Layer 85 , 138 , 150
See also cryptography
authentication, client 93
certificate, client 86
certificate, server 86
cipher suites 86 , 88
data transmission 95 , 98 , 139
handshake 86 , 98 , 138
handshake, full 88
handshake, null 88
record protocol 86
server key, 1024 bit 91
server key, 512 bit 91
session ID re-use 88
X.509 certificates 86
SecureWay

Host on-Demand 3
Network Dispatcher 30
SIT parameters
EDSALIM 44
ENCRYPTION 166
MXT 23 , 135
SSLDELAY 97 , 166
SSLTCBS 139
SUBTSKS 146
TRANISO 24
WEBDELAY 13 , 55
software, levels 162
state data 69
storage 23
DSA 139
EDSA 44

T

TCBs 27
CO TCB 146
FO TCB 146
QR TCB 27 , 33
S8 TCB 97
SL TCB 147
SO TCB 147
stealing of 97 , 99 , 139
TCP/IP
See eNetwork Communications Server
TCPIPSERVICE 30
BACKLOG 28 , 135
SOCKETCLOSE 56 , 96 , 135 , 166
TSQPREFIX 136
Terminal Owning Region (TOR) 159
Trader 37
business transaction 37
Company 153
TRADERBL 38 , 52 , 106
TRADERPL 38 , 52

V

VSAM Record Level Sharing (RLS) 159
VTAM
See eNetwork Communications Server

W

Web Owning Region (WOR) 159
Web server, OS/390 10 , 27

WebSphere Application Server
See Web server
workload management 29 , 148
See also CICSPlex System Manager
See also eNetwork Communications Server ,
dynamic DNS and TCP/IP Port Sharing
See also SecureWay Network Dispatcher

List of Figures
Chapter 1: CICS and Web-enabling
Figure 1: Separation of CICS business and presentation logic
Figure 2: CICS Web support
Figure 3: CICS Web support — direct connection
Figure 4: CICS Web support, with the CICS WebServer Plugin
Figure 5: CICS Web support — 3270 Web bridge
Figure 6: CICS Transaction Gateway
Figure 7: CICS Transaction Gateway applet architecture on OS/390
Figure 8: CICS Transaction Gateway servlet architecture on OS/390

Chapter 2: Performance and capacity planning factors
Figure 9: Performance flowchart

Chapter 3: The 3270 green screen Trader application
Figure 10: 3270 Trader application summary
Figure 11: Trader signon display
Figure 12: Company selection display
Figure 13: Options menu display
Figure 14: Real-time quote display
Figure 15: Shares — Buy display
Figure 16: 3270 Trader workload, throughput vs. CPU usage
Figure 17: 3270 Trader workload, throughput vs. CPU ms/transaction
Figure 18: Linear equations for 3270 Trader CPU usage
Figure 19: Breakdown of CPU usage for 3270 Trader application

Chapter 4: CWS with the 3270 Web bridge
Figure 20: 3270 Web bridge Trader application flow
Figure 21: 3270 Web bridge test environment
Figure 22: 3270 Web bridge, non-continuous pseudo-conversation
Figure 23: 3270 Web bridge, continuous vs. non-continuous pseudo-conversation
Figure 24: 3270 Web bridge general increase formulae
Figure 25: Capacity planning estimates for Trader via 3270 Web bridge

Chapter 5: CWS with Web-aware presentation logic
Figure 26: Separation of business logic and presentation logic
Figure 27: Trader application flow using CWS and Web-aware presentation logic
Figure 28: CWS test environment
Figure 29: CPU usage of 5 KB send using CWS direct connection
Figure 30: CPU usage of 5 KB byte send using CWS WebServer Plugin
Figure 31: CWS HTTP data transfers, COMMAREA vs. WEB API application design
Figure 32: CPU usage for HTTP data transfers using CWS direct connection
Figure 33: CPU usage for HTTP data transfers CWS and WebServer Plugin
Figure 34: Equations for CPU usage per Web request based on HTTP data size
Figure 35: Capacity planning estimates for Trader via CWS

Chapter 6: SSL with CWS
Figure 36: SSL handshake process
Figure 37: Types of SSL handshakes
Figure 38: SSL handshakes — CWS direct connection
Figure 39: SSL handshakes, client certificates
Figure 40: SSL handshakes — WebServer Plugin
Figure 41: CPU usage for 8 KB SSL data transmissions
Figure 42: Capacity planning estimates for Trader via CWS with SSL

Chapter 7: The OS/390 CTG
Figure 43: Trader application flow using the CTG applet architecture
Figure 44: Trader application flow using the servlet architecture
Figure 45: CTG threading model
Figure 46: CTG applet test environment
Figure 47: CPU usage of CTG applets, with an HTTP connection
Figure 48: CPU usage of CTG applets, with a TCP/Ip connection
Figure 49: CPU usage of CTG applets making TCP/IP connection
Figure 50: CPU cost of varying CTG applet ECI COMMAREAs
Figure 51: CPU usage of CTG applets using multiple CTG address spaces
Figure 52: CTG servlet test environment.
Figure 53: CPU usage of CTG servlets
Figure 54: CPU usage of servlets with and without the CTG
Figure 55: CPU usage of servlets with persistent HTTP connections
Figure 56: CPU usage comparison for Trader via CTG

Chapter 8: Conclusions and recommendations
Figure 57: Capacity planning estimates to Web-enable the Trader application
Figure 58: Data compression using CTG applets
Figure 59: CICS dispatcher statistics extract
Figure 60: Components to provide workload balancing

Chapter 9: CICS Web capacity planning example

Figure 61: The final Trader configuration

List of Tables
Chapter 2: Performance and capacity planning factors
Table 1: Selected LSPR ratios for CICS

Chapter 3: The 3270 green screen Trader application
Table 2: CPU costs from CICS monitoring for 3270 Trader application
Table 3: CPU percentage breakdown for Trader via 3270 Web bridge

Chapter 4: CWS with the 3270 Web bridge
Table 4: Estimated CPU increase for Trader via 3270 Web bridge
Table 5: CPU percentage breakdown for Trader via 3270 Web bridge

Chapter 5: CWS with Web-aware presentation logic
Table 6: HTTP datastream sizes when using Trader via CWS
Table 7: Breakdown of costs in CWS Web-enabled Trader
Table 8: CPU usage per Web request with CWS and direct connection
Table 9: CPU percentage breakdown for CWS direction connection
Table 10: CPU usage per Web request with CWS WebServer Plugin
Table 11: CPU percentage breakdown for CWS WebServer Plugin

Chapter 6: SSL with CWS
Table 12: SSL handshake delta
Table 13: SSL data transmission delta
Table 14: CPU usage per Web request with SSL and a CWS direct connection
Table 15: CPU percentage breakdown for CWS direct connection with SSL

Chapter 7: The OS/390 CTG
Table 16: CPU cost per ECI call with increasing COMMAREA sizes
Table 17: CPU percentage breakdown for CTG applet Trader
Table 18: CPU percentage breakdown for CTG servlet Trader

Chapter 9: CICS Web capacity planning example
Table 19: Single business transaction using 3270 access
Table 20: Single business transaction using CWS with the 3270 Web bridge
Table 21: Single business transaction using CWS and Web-aware logic

Table 22: Single business transaction using CWS with WebServer Plugin
Table 23: Single business transaction using CTG Java applets
Table 24: Single business transaction using CTG Java servlets

Appendix A: Test environments
Table 25: CICS SIT parameters
Table 26: CICS SIT parameters for CICS Web support
Table 27: TCPIPSERVICE definition
Table 28: TCP/IP parameters
Table 29: CICS SIT parameters for CICS Web support with SSL
Table 30: SSL configuration parameters

Appendix B: Performance data
Table 31: 3270 Trader CPU usage
Table 32: 3270 Web bridge, continuous pseudo-conversation
Table 33: 3270 Web bridge, non-continuous pseudo-conversation
Table 34: CWS direct connection, data transmission sizes
Table 35: CWS direct connection, persistent HTTP connection, 100 byte send
Table 36: CWS direct connection, persistent HTTP connection, 5KB send
Table 37: CWS direct connection, persistent HTTP connection, 15KB send
Table 38: CWS direct connection, persistent HTTP connection, 32KB send
Table 39: CWS direct connection, persistent HTTP connection, 33KB send
Table 40: CWS direct connection, persistent HTTP connection, 50KB send
Table 41: CWS direct connection, persistent HTTP connection, 100 byte receive
Table 42: CWS direct connection, persistent HTTP connection, 5KB receive
Table 43: CWS direct connection, persistent HTTP connection, 15KB receive
Table 44: CWS direct connection, persistent HTTP connection, 32KB receive
Table 45: CWS direct connection, persistent HTTP connection, 33KB receive
Table 46: CWS direct connection, persistent HTTP connection, 50KB receive
Table 47: CWS direct connection, non-persistent HTTP connection, 100 byte send
Table 48: CWS direct connection, non-persistent HTTP connection, 5KB send
Table 49: CWS direct connection, non-persistent HTTP connection, 15KB send
Table 50: CWS direct connection, non-persistent HTTP connection, 32KB send
Table 51: CWS direct connection, non-persistent HTTP connection, 33KB send
Table 52: CWS direct connection, non-persistent HTTP connection, 50KB send
Table 53: CWS direct connection, non-persistent HTTP connection, 100 byte receive
Table 54: CWS direct connection, non-persistent HTTP connection, 5KB receive
Table 55: CWS direct connection, non-persistent HTTP connection, 15KB receive
Table 56: CWS direct connection, non-persistent HTTP connection, 32KB receive
Table 57: CWS direct connection, non-persistent HTTP connection, 33KB receive
Table 58: CWS direct connection, non-persistent HTTP connection, 50KB receive
Table 59: CWS direct connection, COMMAREA manipulation, 5KB send
Table 60: CWS direct connection, COMMAREA manipulation, 5KB receive
Table 61: CWS and WebServer Plugin, data transmission sizes
Table 62: WebServer Plugin, persistent HTTP connection, 100 bytes send
Table 63: WebServer Plugin, persistent HTTP connection, 5KB send
Table 64: WebServer Plugin, persistent HTTP connection, 15KB send
Table 65: WebServer Plugin, persistent HTTP connection, 32KB send

Table 66: WebServer Plugin, persistent HTTP connection, 100 byte receive
Table 67: WebServer Plugin, persistent HTTP connection, 5KB receive
Table 68: WebServer Plugin, persistent HTTP connection, 15KB receive
Table 69: WebServer Plugin, persistent HTTP connection, 32KB receive
Table 70: WebServer Plugin, non-persistent HTTP connection, 100 byte send
Table 71: WebServer Plugin, non-persistent HTTP connection, 5KB send
Table 72: WebServer Plugin, non-persistent HTTP connection, 15KB send
Table 73: WebServer Plugin, non-persistent HTTP connection, 32KB send
Table 74: Data transmission sizes, CWS direct connection
Table 75: Data transmission sizes, WebServer Plugin
Table 76: Non-SSL, non-persistent HTTP connection, CWS direct connection
Table 77: SSL full handshake, 1024-bit key, CWS direct connection
Table 78: SSL full handshake, 512-bit key, CWS direct connection
Table 79: SSL full handshake with crypto, 1024-bit key, CWS direct connection
Table 80: SSL full handshake with crypto, 512-bit key, CWS direct connection
Table 81: SSL null handshake, 1024-bit key, CWS direct connection
Table 82: SSL null handshake, 512-bit key, CWS direct connection
Table 83: SSL full handshake, 1024-bit key, client certs, CWS direct connection
Table 84: SSL full handshake with crypto, 1024-bit key, client certs, CWS direct connection
Table 85: Non-SSL 1 byte transmission, CWS direct connection
Table 86: Non-SSL 8KB transmission, CWS direct connection
Table 87: Non-SSL 16KB transmission, CWS direct connection
Table 88: SSL 1 byte transmission, RC4-MD5(40 bit), CWS direct connection
Table 89: SSL 8KB transmission, RC4-MD5(40 bit), CWS direct connection
Table 90: SSL 16KB transmission, RC4 -MD5(40 bit), CWS direct connection
Table 91: SSL1 byte transmission, RC4-MD5(128 bit), CWS direct connection
Table 92: SSL 8KB transmission, RC4-MD5(128 bit), CWS direct connection
Table 93: SSL 16KB transmission, RC4 -MD5(128 bit), CWS direct connection
Table 94: SSL 1 byte transmission, triple DES, CWS direct connection
Table 95: SSL 8KB transmission, triple DES, CWS direct connection
Table 96: SSL 16KB transmission, triple DES, CWS direct connection
Table 97: SSL 1 byte transmission, triple DES with crypto, CWS direct connection
Table 98: SSL 8KB transmission, triple DES with crypto, CWS direct connection
Table 99: SSL 16KB transmission, triple DES with crypto, CWS direct connection
Table 100: SSL full handshake, 1024 bit key, WebServer Plugin
Table 101: SSL full handshake, 512-bit key, WebServer Plugin
Table 102: SSL null handshake, 1024-bit key, WebServer Plugin
Table 103: SSL null handshake, 512-bit key, WebServer Plugin
Table 104: SSL 1 byte transmission, RC4-MD5(40 bit), WebServer Plugin
Table 105: SSL 8KB transmission, RC4-MD5(40 bit), CWS direct connection
Table 106: SSL 16KB transmission, RC4 -MD5(40 bit), CWS direct connection
Table 107: Applets, TCP/IP, no connection re-use, COMMAREA 100 bytes
Table 108: Applets, TCP/IP connection, COMMAREA 100 bytes
Table 109: Applets, TCP/IP connection, COMMAREA 1000 bytes
Table 110: Applets, TCP/IP connection, COMMAREA 2000 bytes
Table 111: Applets, TCP/IP connection, COMMAREA 4000 bytes
Table 112: Applets, TCP/IP connection, COMMAREA 8000 bytes
Table 113: Applets, TCP/IP connection, COMMAREA 16000 bytes
Table 114: Applets, TCP/IP connection, multiple CTG address spaces
Table 115: Applets, HTTP connection, COMMAREA 100 bytes
Table 116: Applets, HTTP connection, COMMAREA 1000 bytes

Table 117: Applets, HTTP connection, COMMAREA 2000 bytes
Table 118: Applets, HTTP connection, COMMAREA 4000 bytes
Table 119: Applets, HTTP connection, COMMAREA 8000 bytes
Table 120: Applets, HTTP connection, COMMAREA 16000 bytes
Table 121: Servlets, persistent HTTP connection, ECI
Table 122: Servlets, non-persistent HTTP connection, ECI
Table 123: Servlets, persistent HTTP connection, no ECI
Table 124: Servlets, non-persistent HTTP connection, no ECI

List of Sidebars
Chapter 1: CICS and Web-enabling
CWS and CWI

Chapter 5: CWS with Web-aware presentation logic
CPU Usage for Trader
CPU Usage for Trader

Chapter 6: SSL with CWS
SSL CPU estimation
CPU cost of Trader with SSL
CPU cost of SSL for Trader

Chapter 7: The OS/390 CTG
CTG V3.1
OS/390 servlet JVM performance

How to get ITSO redbooks
IBM Intranet for Employees

	Header
	Title Page
	Preface
	Part 1: Performance and CICS Web-enabling
	Chapter 1: CICS and Web-enabling
	Chapter 2: Performance and capacity planning factors
	Chapter 3: The 3270 green screen Trader application
	Chapter 4: CWS with the 3270 Web bridge
	Chapter 5: CWS with Web-aware presentation logic
	Chapter 6: SSL with CWS
	Chapter 7: The OS/390 CTG
	Chapter 8: Conclusions and recommendations
	Chapter 9: CICS Web capacity planning example
	Appendix A: Test environments
	Appendix B: Performance data
	Appendix C: Using the additional material
	Appendix D: Special notices
	Appendix E: Related publications
	Glossary
	Index
	List of Figures
	List of Tables
	List of Sidebars

